Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646864

RESUMO

One new alkyl benzoquinone, paphionone (1), one new trans-stilbenoid, (E)-6,5'-dihydroxy-2,3'-dimethoxystilbene (2), and eight known stilbenoids and flavonoids (3-10) were isolated from the leaves and roots of Paphiopedilum exul (Orchidaceae). Their chemical structures were determined based on IR, ECD, MS and NMR analyses. Cytotoxicity of all isolated compounds towards human hepatocellular carcinoma (HepG2) cell line was examined in vitro by MTT assay. The para-hydroxybenzyl substituted stilbene 10 was potently cytotoxic to the cancer cells, with an IC50 value of 4.80 ± 1.10 µM (selectivity index = 20.83). All compounds were non-toxic to normal human embryo fibroblast (OUMS-36) cell line.

2.
Foods ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37372620

RESUMO

In accordance with Thai wisdom, indigenous plant leaves have been used as food packaging to preserve freshness. Many studies have demonstrated that both antioxidant and antimicrobial activities contribute to protecting food from spoilage. Hence, the ethanolic extracts of leaves from selected plants traditionally used as food packaging, including Nelumbo nucifera (1), Cocos nucifera (2), Nypa fruticans (3), Nepenthes mirabilis (4), Dendrocalamus asper (5), Cephalostachyum pergracile (6), Musa balbisiana (7), and Piper sarmentosum (8), were investigated to determine whether they have antioxidant and antimicrobial activities against spoilage microorganisms and foodborne pathogens that might be beneficial for food quality. Extracts 1-4 exhibited high phenolic content at 82.18-115.15 mg GAE/g and high antioxidant capacity on DPPH, FRAP and SRSA assay at 14.71-34.28 µg/mL, 342.92-551.38 µmol Fe2+/g, and 11.19-38.97 µg/mL, respectively, while leaf extracts 5-8 showed lower phenolic content at 34.43-50.08 mg GAE/g and lower antioxidant capacity on DPPH, FRAP, and SRSA at 46.70-142.16 µg/mL, 54.57-191.78 µmol Fe2+/g, and 69.05->120 µg/mL, respectively. Extracts 1-4 possessed antimicrobial activities against food-relevant bacteria, including Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Only N. mirabilis extract (4) showed antimicrobial activities against Salmonella enterica subsp. enterica serovar Abony and Candida albicans. Extracts 5-8 showed slight antimicrobial activities against B. cereus and E. coli. As the growth and activity of microorganisms are the main cause of food spoilage, N. fruticans (3) was selected for bioassay-guided isolation to obtain 3-O-caffeoyl shikimic acid (I), isoorientin (II) and isovitexin (III), which are responsible for its antimicrobial activity against foodborne pathogens. N. fruticans was identified as a new source of natural antimicrobial compounds I-III, among which 3-O-caffeoyl shikimic acid was proven to show antimicrobial activity for the first time. These findings support the use of leaves for wrapping food and protecting food against oxidation and foodborne pathogens through their antioxidant and antimicrobial activities, respectively. Thus, leaves could be used as a natural packaging material and natural preservative.

3.
J Nat Med ; 77(1): 152-172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36443621

RESUMO

Essential oils (EOs) comprised of various bioactive compounds have been widely detected in the Curcuma species. Due to the widespread distribution and misidentification of Curcuma species and differences in processing methods, inconsistent reports on major compounds in rhizomes of the same species from different geographical regions are not uncommon. This inconsistency leads to confusion and inaccuracy in compound detection of each species and also hinders comparative study based on EO compositions. The present study aimed to characterize EO compositions of 12 Curcuma species, as well as to detect the compositional variation among different species, and between the plant specimens and their related genetically validated crude drug samples using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The plant specimens of the same species showed similar EO patterns, regardless of introducing from different geographical sources. Based on the similarity of EO compositions, all the specimens and samples were separated into eight main groups: C. longa; C. phaeocaulis, C. aeruginosa and C. zedoaria; C. zanthorrhiza; C. aromatica and C. wenyujin; C. kwangsiensis; C. amada and C. mangga; C. petiolata; C. comosa. From EOs of all the specimens and samples, 54 major compounds were identified, and the eight groups were chemically characterized. Most of the major compounds detected in plant specimens were also observed in crude drug samples, although a few compounds converted or degraded due to processing procedures or over time. Orthogonal partial least squares-discriminant analysis allowed the marker compounds to discriminate each group or each species to be identified.


Assuntos
Curcuma , Óleos Voláteis , Curcuma/química , Curcuma/metabolismo , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ásia , Rizoma/química
4.
Sci Rep ; 12(1): 12188, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842504

RESUMO

Aristolochic acids (AAs), which are strong carcinogens, have caused dietary supplements with Aristolochia plants to be discontinued worldwide. Therefore, the development of a method to identify these herbs is critical for customer safety. To support the regulation of Aristolochia-free products, a PCR coupled with lateral flow immunochromatographic assay (PCR-LFA) that is specific to the nucleotide signature in plastid rbcL gene region of Aristolochia species was developed to detect Aristolochia plants and related herbal products. Triplex primers (A397F, C357F and R502) were designed based on specific nucleotides observed exclusively in the rbcL sequences of Aristolochia. Positive results for Aristolochia occur when the three pink lines are clearly developed on the developed lateral flow strip and can be seen by the naked eye. In this study, the lateral flow strip has sensitivity for detecting amplicons amplified from genomic DNA at the concentrations as low as 0.01 ng. Various kinds of samples, including purchased crude drugs and polyherbal samples, have been investigated, and the results showed that Aristolochia crude drugs and Aristolochia-containing products are still present in dispensaries. In conclusion, with the goal of protecting consumers from the health risks associated with Aristolochia contamination, PCR-LFA was developed and demonstrated to be efficient for detecting plants belonging to Aristolochia in various kinds of samples.


Assuntos
Aristolochia , Ácidos Aristolóquicos , Nefropatias , Ácidos Aristolóquicos/toxicidade , Imunoensaio , Reação em Cadeia da Polimerase
5.
PeerJ ; 10: e13508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651747

RESUMO

Background: Triple-negative breast cancer (TNBC) responds poorly to the available drugs; thus, the mortality rate associated with TNBC remains high. 7-α-Hydroxyfrullanolide (7HF) possesses anticancer properties and arrests cells in the G2/M-phase via modulation of several proteins involved in the G2/M-phase transition, as well as the mitotic checkpoint in MDA-MB-468 (TNBC) cells. Microtubules (MTs) dynamically regulate cell division in the G2/M phase and are related to cancer cell stress response. However, antimitotic drug cytotoxicity to multiple cancer resistance developed in response to drugs are obstacles faced to date. Here, the activity and mechanism via which 7HF controls MTs dynamics was investigated in MDA-MB-468 cells. Methods: 7HF uptake by MDA-MB-468 cells was assessed using spectrophotometry. The drug-like properties of 7HF were predicted using the Swiss-absorption, distribution, metabolism, and excretion (ADME) webtool. Then, the effect of 7HF treatment (6, 12, and 24 µM) on the dynamic arrangement of MTs was assessed for 1, 12, and 24 h using indirect immunofluorescence. Polymerization of α- and ß-tubulin was assessed using different 7HF concentrations in a cell-free system for 1 h. Cell proliferation assay with bromodeoxyuridine plus propidium iodide staining and flow cytometry was performed at different 7HF concentrations and time points. The mechanism of action was assessed by detecting the expression of proteins, including Bub3, cyclin B1, p-Cdk1 (Tyr15), Rb, p-Rb (Ser780), Chk1, p-Chk1 (Ser345), Chk2, p-Chk2 (Ser516), and p-H2AX (Ser139), using western blotting. Molecular docking was used to predict the molecular interactions between 7HF and tubulins in MTs. Results: We observed that 7HF was able to enter the MDA-MB-468 cells. The ADME webtool analysis predicted that it possesses the high passive permeation and gastrointestinal absorption properties of drugs. Various concentrations of 7HF disrupted the dynamic arrangement of spindle MTs by causing radial spindle array shrinkage and expansion of fibrous spindle density and radial array lengths in a time-dependent manner. 7HF reduced polymerization of α-, ß-tubulin in dose-dependent manner. 7HF also triggered DNA damage response by inducing G2/M and G1 phase arrests in a concentration and time-dependent manner, which occurred due to the upregulation of Bub3, Chk1, p-Chk1 (Ser345), p-Cdk1 (Tyr15), and cyclin B1. According to molecular docking analysis, 7HF preferred to bind to ß-tubulin over α-tubulin. The lactone, ketone, and hydroxyl groups of 7HF supported the 7HF-tubulin interactions. Hydrogen bonding with a hydrocarbon ring and salt bridge attractive forces were responsible for the binding versatility of 7HF. Conclusions: This is the first study to investigate the molecular mechanism, MTs interacting sites, and the internalization and drug-like properties of 7HF in TNBC cells. The findings will be useful for developing 7HF-based treatment for patients with TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Ciclina B1/farmacologia , Proliferação de Células , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Tubulina (Proteína)/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Microtúbulos
6.
BMC Complement Med Ther ; 22(1): 139, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585532

RESUMO

BACKGROUND: Crinum latifolium L. (Amaryllidaceae) has been used in Southeast Asian traditional medicine to alleviate the symptoms of benign prostatic hyperplasia (BPH). The pathological mechanism of BPH is associated with the induction of prostate stromal cell proliferation through transforming growth factor-beta (TGF-ß). Standardization as well as investigation of the potential anti-BPH activity of C. latifolium extract could benefit the further development of BPH-related analyses and provide evidence to support the application of this extract for BPH treatment. This study aimed to standardize and investigate the antiproliferative activity of the ethanolic extract of C. latifolium leaves. The major alkaloids isolated from C. latifolium were also explored for their potential use as bioactive markers. METHODS: Two major alkaloids were isolated from the ethanolic extract of C. latifolium leaves by chromatographic techniques, identified by NMR and MS, and quantified by a validated UHPLC method. Their antiproliferative activity was studied in human prostate stromal cells (WPMY-1) induced by TGF-ß. The synergistic effect of combining the two major isolated alkaloids was analyzed by the zero interaction potency (ZIP) model. RESULTS: Two alkaloids, lycorine (1) and 6α-hydroxybuphanidrine (2), were isolated from the ethanolic leaf extract of C. latifolium. A UHPLC method for the quantification of (1) and (2) was developed and validated in terms of linearity, precision, and accuracy. The C. latifolium leaf extract contained 0.279 ± 0.003% (1) and 0.232 ± 0.004% (2). The crude extract was more potent than either (1) and (2) alone against TGF-ß-treated WPMY-1 cell proliferation. The drug combination study revealed that the greatest synergistic effect of (1) and (2) was achieved at a 1:1 ratio. CONCLUSIONS: The results of this study support the anti-BPH activity of C. latifolium in traditional medicine and suggest that these the two isolated alkaloids may promote the efficacy of the C. latifolium extract. Additionally, major alkaloids (1) and (2) can be used as bioactive markers for the standardization of C. latifolium extracts.


Assuntos
Alcaloides , Crinum , Hiperplasia Prostática , Alcaloides/farmacologia , Crinum/química , Humanos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Próstata/patologia , Hiperplasia Prostática/tratamento farmacológico , Padrões de Referência , Células Estromais/patologia , Fator de Crescimento Transformador beta
7.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056723

RESUMO

Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and ß-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.


Assuntos
Neoplasias de Mama Triplo Negativas
8.
Antioxidants (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805467

RESUMO

Autophagic cell death (ACD) is an alternative death mechanism in resistant malignant cancer cells. In this study, we demonstrated how polyphenol stilbene compound PE5 exhibits potent ACD-promoting activity in lung cancer cells that may offer an opportunity for novel cancer treatment. Cell death caused by PE5 was found to be concomitant with dramatic autophagy induction, as indicated by acidic vesicle staining, autophagosome, and the LC3 conversion. We further confirmed that the main death induction caused by PE5 was via ACD, since the co-treatment with an autophagy inhibitor could reverse PE5-mediated cell death. Furthermore, the defined mechanism of action and upstream regulatory signals were identified using proteomic analysis. Time-dependent proteomic analysis showed that PE5 affected 2142 and 1996 proteins after 12 and 24 h of treatment, respectively. The crosstalk network comprising 128 proteins that control apoptosis and 25 proteins involved in autophagy was identified. Protein-protein interaction analysis further indicated that the induction of ACD was via AKT/mTOR and Bcl-2 suppression. Western blot analysis confirmed that the active forms of AKT, mTOR, and Bcl-2 were decreased in PE5-treated cells. Taken together, we demonstrated the novel mechanism of PE5 in shifting autophagy toward cell death induction by targeting AKT/mTOR and Bcl-2 suppression.

9.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668176

RESUMO

Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.


Assuntos
Bacopa/química , Enzimas Reparadoras do DNA/metabolismo , Endonucleases/metabolismo , Glicosídeos/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Triterpenos/farmacologia , Vacúolos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Endonucleases/deficiência , Endonucleases/genética , Glicosídeos/química , Extratos Vegetais/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/química , Vacúolos/metabolismo
10.
Sci Rep ; 10(1): 14753, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901085

RESUMO

Cyanthillium cinereum (L.) H.Rob. is one of the most popular herbal smoking cessation aids currently used in Thailand, and its adulteration with Emilia sonchifolia (L.) DC. is often found in the herbal market. Therefore, the quality of the raw material must be considered. This work aimed to integrate macro- and microscopic, chemical and genetic authentication strategies to differentiate C. cinereum raw material from its adulterant. Different morphological features between C. cinereum and E. sonchifolia were simply recognized at the leaf base. For microscopic characteristics, trichome and pappus features were different between the two plants. HPTLC profiles showed a distinct band that could be used to unambiguously differentiate C. cinereum from E. sonchifolia. Four triterpenoid compounds, ß-amyrin, taraxasterol, lupeol, and betulin, were identified from the distinct HPTLC band of C. cinereum. The use of core DNA barcode regions; rbcL, matK, ITS and psbA-trnH provided species-level resolution to differentiate the two plants. Taken together, the integration of macroscopic and microscopic characterization, phytochemical analysis by HPTLC and DNA barcoding distinguished C. cinereum from E. sonchifolia. The signatures of C. cinereum obtained here can help manufacturers to increase the quality control of C. cinereum raw material in commercialized smoking cessation products.


Assuntos
Asteraceae/classificação , Asteraceae/genética , Cromatografia Líquida de Alta Pressão/métodos , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/análise , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Abandono do Hábito de Fumar , Especificidade da Espécie
11.
Int J Biomater ; 2019: 9404383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781223

RESUMO

Cancer is a noncommunicable disease with a high worldwide incidence and mortality rate. The National Cancer Institute of Thailand reports increasing cumulative incidence of breast, colorectal, liver, lung, and cervical cancers, accounting for more than 60% of all cancers in the kingdom. In this current work, we attempt to elucidate the phytochemical composition of the okra (Abelmoschus esculentus (L.) Moench) seed extract (OSE) and study its anticancer activity, delivered in its native form as well as in the form of polymeric micelles with enhanced solubility, in three carcinoma cell lines (MCF-7, HeLa, and HepG2). The presence of flavonoid compounds in the OSE was successfully confirmed, and direct delivery had the highest cytotoxic effect on the breast cancer cell line (MCF-7), followed by the hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cell lines in that order, while its delivery in polymeric micelles further increased this effect only in the HepG2 cell line. The OSE's observed cytotoxic effects on cancer cell lines demonstrated a dose and time-dependent cell proliferation and migration inhibition plausibly due to VEGF production inhibition, leading to apoptosis and cell death, conceivably due to the four flavonoid compounds noted in the current study, one of which was isoquercitrin. However, in view of the latter compound's isolated effects being inferior to those observed by the OSE, we hypothesize that either isoquercitrin requires the biological synergy of any one or all of the observed flavonoids or any of the three in isolation or all in concert are responsible. Further studies are required to elucidate the nature of the three unknown compounds. Furthermore, as we encountered significant problems in dissolving the okra seed extract and creating the polymeric micelles, further studies are needed to devise a clinically beneficial delivery and targeting system.

12.
Oncol Lett ; 17(6): 5283-5291, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31186745

RESUMO

Breast cancer is the leading cause of female mortality worldwide. Although there are several modern treatments for breast cancer, there is a high rate of recurrence for the majority of treatments; therefore, the search for effective anticancer agents continues. The present study aimed to investigate the anti-breast cancer potential of frullanolide, a compound which is isolated and purified from the Grangea maderaspatana plant, for selected human breast cancer cell lines (MCF-7, MDA-MB-468 and MDA-MB-231). The MTT assay was used to assess cytotoxic activity in breast cancer cell lines of treatment with frullanolide at 1.25, 2.5, 5.0, 10.0 and 20.0 µg/ml. Additionally, the apoptotic induction ability of frullanolide at various concentrations [0.5×, 1× and 2× half maximal inhibitory concentration (IC50)] was investigated by flow cytometry and western blot analysis. Frullanolide exhibited strong anti-breast cancer activity against MDA-MB-468 (IC50, 8.04±2.69 µg/ml) and weak cytotoxicity against the MCF-7 (IC50, 10.74±0.86 µg/ml) and MDA-MB-231 (IC50, 12.36±0.31 µg/ml) cell lines. The IC50 of frullanolide was high in the human normal epithelial breast cell line (MCF-12A) and mouse fibroblast cell line (L-929). Density plot diagrams revealed that frullanolide induced apoptosis in MCF-7, MDA-MB-468 and MDA-MB-231 cells. Notably, a plausible anticancer mechanism was elucidated via cellular apoptosis by p53-independence in the treated MCF-7 cell line and p53-dependence in the treated MDA-MB-468 and MDA-MB-231 cell lines. In conclusion, the present study demonstrated that frullanolide may exert anticancer activity on breast cancer cell lines by inducing apoptosis. Frullanolide offers a possible novel approach to breast cancer therapy.

13.
PLoS One ; 13(8): e0202625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30125304

RESUMO

The anecdotal evidence is outstanding on the uses of Aristolochia plants as traditional medicines and dietary supplements in many regions of the world. However, herbal materials derived from Aristolochia species have been identified as potent human carcinogens since the first case of severe renal disease after ingesting these herbal preparations. Any products containing Aristolochia species have thus been banned on many continents, including Europe, America and Asia. Therefore, the development of a method to identify these herbs is critically needed for customer safety. The present study evaluated DNA barcoding of the rbcL, matK, ITS2 and trnH-psbA regions among eleven Aristolochia species collected in Thailand. Polymorphic sites were observed in all four DNA loci. Among those eleven Aristolochia species, three species (A. pierrei, A. tagala and A. pothieri) are used as herbal materials in Thai folk medicine, namely, in Thai "Krai-Krue". "Krai-Krue" herbs are interchangeably used as an admixture in Thai traditional remedies without specific knowledge of their identities. A species-specific multiplex PCR based on nucleotide polymorphisms in the ITS2 region was developed as an identification tool to differentiate these three Aristolochia species and to supplement the HPTLC pattern in clarifying the origins of herbal materials. The combination of multiplex PCR and HPTLC profiling achieves accurate herbal identification with the goal of protecting consumers from the health risks associated with product substitution and contamination.


Assuntos
Aristolochia/genética , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Aristolochia/classificação , DNA Espaçador Ribossômico/classificação , DNA Espaçador Ribossômico/genética , Europa (Continente) , Preparações de Plantas , Especificidade da Espécie , Tailândia
14.
J Ethnopharmacol ; 223: 10-21, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29777901

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. AIM OF THE STUDY: To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. RESULTS: Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. CONCLUSIONS: B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF).


Assuntos
Bacopa , Enzimas Reparadoras do DNA/genética , Endonucleases/genética , Extratos Vegetais/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Colubrina , Humanos , Medicina Tradicional , Plantas Medicinais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Planta Med ; 83(18): 1412-1419, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28575911

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro. These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection.


Assuntos
Anticorpos Monoclonais/imunologia , Infecções por Coronavirus/veterinária , Lactuca/imunologia , Nicotiana/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Lactuca/genética , Lactuca/virologia , Agricultura Molecular , Testes de Neutralização/veterinária , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Planticorpos/genética , Planticorpos/imunologia , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Nicotiana/genética , Nicotiana/virologia , Células Vero
16.
Biomed Pharmacother ; 81: 235-241, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27261599

RESUMO

BACKGROUND: Natural products are a potential source for cancer chemotherapeutic development. This current study was performed to investigate the anti-tumor potential of 5,7,4'-trihydroxy-6,8-diprenylisoflavone (TD) and lupalbigenin (LB), plant flavonoids found in Derris scandens Benth (family: Leguminosae), in cancer and normal cell lines. METHODS: The human breast cancer cell lines MCF-7, MDA-MB-231 and MDA-MB-468, the human colon cancer cell line SW-620, and the mouse fibroblast cell line L-929 were used to test their anti-cancer activity. Apoptotic cell levels were measured by staining with annexin-V and propidium iodide and Western blot analysis was performed to confirm the apoptotic mechanism. RESULTS: The results revealed that TD and LB showed specific cytotoxicity against MDA-MB-231 and MCF-7 cells. To elucidate mode of cell death via cytotoxic activities, breast cancer cell lines were treated. TD and LB induced MDA-MB-231 and MCF-7 cells to apoptosis, with the highest number of apoptotic cells at 24 and 72h, respectively. Furthermore, TD and LB inhibited cell cycle progression via up-regulation of p21. Both compounds stimulated apoptosis through down-regulation of bcl-2, up-regulation of bax and releasing of cytochrome C proteins. CONCLUSIONS: TD and LB have significant anti-cancer effects against human breast cancer cells via cell cycle arrest and the induction of apoptosis through mitochondria signaling pathways, and may be potential anti-cancer agents for the treatment of breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Derris/química , Isoflavonas/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Feminino , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Isoflavonas/química , Camundongos
17.
J Asian Nat Prod Res ; 18(12): 1143-1150, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27311018

RESUMO

Two new stilbenes, 2-(3',5'-dimethoxyphenyl)-6-hydroxy-5-methoxybenzofuran (1) and 3'-hydroxy-2,5'-dimethoxystilbene (2), together with seven known stilbenes (3, 5-10) and one flavanone (4), were isolated from the roots of Paphiopedilum godefroyae. Their chemical structures were determined on the basis of their spectroscopic data. These isolated compounds were evaluated for their cytotoxicity against human small cell lung cancer (NCI-H187) cell lines and an arylbenzofuran derivative, 5,6-dimethoxy-2-(3-hydroxy-5-methoxyphenyl)benzofuran (6), was shown to be strongly cytotoxic with an IC50 value of 5.10 µM.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Flavanonas/isolamento & purificação , Flavanonas/farmacologia , Orchidaceae/química , Raízes de Plantas/química , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , Antineoplásicos Fitogênicos/química , Benzofuranos/química , Ensaios de Seleção de Medicamentos Antitumorais , Flavanonas/química , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Estilbenos/química , Tailândia
18.
Biol Pharm Bull ; 39(4): 631-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26754253

RESUMO

Derris scandens (ROXB.) BENTH. (Fabaceae) is used as an alternative treatment for cancer in Thai traditional medicine. Investigation of the topoisomerase II (Top2) poison of compounds isolated from this plant may reveal new drug leads for the treatment of cancer. Bioassay-guided isolation was performed on an extract of D. scandens stems using a yeast cell-based assay. A yeast strain expressing the top2-1 temperature-sensitive mutant was used to assay Top2 activity. At the permissive temperature of 25°C, yeast cells were highly sensitive to Top2 poison agents. At the semi-permissive temperature of 30°C, where enzyme activity was present but greatly diminished, cells displayed only marginal sensitivity. The bioassay-guided fractionation of the extract led to the isolation of two known isoflavones: 5,7,4'-trihydroxy-6,8-diprenylisoflavone (1) and lupalbigenin (2). These two compounds also displayed cytotoxicity against three different cancer cell lines, KB, MCF-7 and NCI-H187. In conclusion, Top2 poison agents from D. scandens are reported for the first time, substantiating the use of D. scandens in Thai traditional medicine for cancer treatment.


Assuntos
Antineoplásicos , Derris , Isoflavonas , Inibidores da Topoisomerase II , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/toxicidade , Bioensaio , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Isoflavonas/isolamento & purificação , Isoflavonas/toxicidade , Caules de Planta , Saccharomyces cerevisiae/genética , Inibidores da Topoisomerase II/isolamento & purificação , Inibidores da Topoisomerase II/toxicidade , Células Vero
19.
Anticancer Res ; 35(5): 2827-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25964563

RESUMO

BACKGROUND/AIM: The ability of cancer cells to resist to anoikis has been shown to augment cancer cell metastasis in many cancers. In search for potential substances for anti-metastatic approaches, this study aimed to investigate anoikis-sensitizing activity of lupalbigenin, extracted from Derris scandens. MATERIALS AND METHODS: Human lung cancer cells were treated with non-cytotoxic concentrations of lupalbigenin in a detachment condition. Anoikis was evaluated at various time points using MTT viability assays. The effect of lupalbigenin on anchorage-independent growth was performed by soft-agar assay. The survival signaling proteins, as well as regulatory proteins of apoptosis and metastasis, were examined by western blot analysis. RESULTS: Lupalbigenin treatment significantly down-regulated survival proteins, including protein kinase B (pAKT/AKT) and extracellular signal-regulated kinase (pERK/ERK), as well as anti-apoptotic protein B-cell lymphoma 2 (BCL-2), resulting in the enhancement of the cellular response to anoikis and the decrease of growth and survival in an anchorage-independent condition. CONCLUSION: Lupalbigenin sensitizes detachment-induced cell death in human lung cancer cell through down-regulation of pro-survival proteins.


Assuntos
Anoikis/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Isoflavonas/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Derris/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Metástase Neoplásica , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Transdução de Sinais/efeitos dos fármacos
20.
J Med Assoc Thai ; 98 Suppl 1: S98-106, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25764620

RESUMO

The objective of this study is to investigate the anticancer potential of the extract of Colocasia gigantea C. gigantea), a plant member of the Araceae family. In the present study, we investigated the cytotoxic activity of C. gigantea extract on cervical cancer (Hela) and human white blood cells (WBC) in vitro. The authors then identified the bioactive ingredients that demonstrated cytotoxicity on tested cells and evaluated those bioactive ingredients using the bioassay-guided fractionation method. The results showed that not all parts of C. gigantea promote cytotoxic activity. The dichloromethane leaf fraction showed significant cell proliferation effect on Hela cells, but not on WBCs. Only the n-hexane tuber fraction (Fr. 1T) exhibited significant cytotoxicity on Hela cells (IC50 = 585 µg/ml) and encouraged WBC cell proliferation. From GC-Mass spectrometry, 4,22-Stigmastadiene-3-one, Diazoprogesterone, 9-Octadecenoic acid (Z)-, hexyl ester and Oleic Acid were the components of Fr 1T that demonstrated cytotoxic potential. In conclusion, C. gigantea's Fr 1T shows potential for cervical cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Colocasia/química , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Células HeLa , Humanos , Leucócitos/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA