Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(3): 997-1005, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30574972

RESUMO

A new and facile approach to stabilise copper(i) complexes in aqueous solution by the addition of zinc(ii) ions in combination with acetate ions (OAc-) was demonstrated. This stability enhancement toward the aerobic oxidation of copper(i) species was investigated by various techniques including UV-vis spectroscopy, 1H-NMR, FT-IR, and ESI-MS. Our experimental results together with DFT calculations led to a proposed structure of [(adpa)Cu-OAc-Zn(OAc)(H2O)2]+/2+. It was also postulated that zinc(ii) with its Lewis acidity may attract electrons from the Cu centre through the bridging ligands (OAc-), resulting in the lower reactivity of Cu(i) with O2. In addition, this strategy was shown to be applicable to ascorbic acid detection by monitoring a change in the redox states of copper complexes using fluorescence spectroscopy. Moreover, it was demonstrated that the method was sensitive and accurate for the quantitative analysis of ascorbic acid in vitamin C tablets.

2.
Dalton Trans ; 47(45): 16337-16349, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30403394

RESUMO

A series of copper complexes bearing polypyridyl tridentate ligands have been prepared to fine tune their reactivity toward the oxygen reduction reaction (ORR). During the process of preparation of our copper complexes, we successfully obtained two new crystal structures which are [Cu2(µ-Cl)2(adpa)2](ClO4)2 (2b) and [Cu2(addpa)(CH3CN)2(ClO4)2](ClO4)2 (3a) and a new structure [Cu2(addpa)(CH3CN)2(H2O)2](ClO4)4 (3b) captured after the catalytic ORR. Electrochemical studies and stoichiometric chemical reduction of copper(ii) complexes by ascorbic acid indicated that the presence of an anthracene unit helps to facilitate the reduction of Cu(ii) as well as the stabilisation of Cu(i) species. Regarding oxygen activation, the dinuclear Cu(i) complex 3a showed significantly higher ORR activity than its analogous mononuclear complex 2a. Complex 3a was also found to be relatively robust and competent in catalytic O2 reduction. The observed H2O2 product after this catalysis, together with the data obtained from DFT calculations supported that 3a exhibited a 2H+, 2e- catalytic activity towards the ORR as opposed to the expected 4H+, 4e- process usually found in copper complexes with tridentate ligands. The proton (H+) source for this process was expected from ascorbic acid which also serves as a reducing agent in this reaction. This work highlighted an approach for tuning the ORR activity of the copper complexes by the introduction of a conjugated-π moiety to the supporting ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA