RESUMO
Purpose: Emerging data indicate that metformin may prevent the development of age-related macular degeneration (AMD). Whereas the underlying mechanisms of metformin's anti-aging properties remain undetermined, one proposed avenue is the gut microbiome. Using the laser-induced choroidal neovascularization (CNV) model, we investigate the effects of oral metformin on CNV, retinal pigment epithelium (RPE)/choroid transcriptome, and gut microbiota. Methods: Specific pathogen free (SPF) male mice were treated via daily oral gavage of metformin 300 mg/kg or vehicle. Male mice were selected to minimize sex-specific differences to laser induction and response to metformin. Laser-induced CNV size and macrophage/microglial infiltration were assessed by isolectin and Iba1 immunostaining. High-throughput RNA-seq of the RPE/choroid was performed using Illumina. Fecal pellets were analyzed for gut microbiota composition/pathways with 16S rRNA sequencing/shotgun metagenomics, as well as microbial-derived metabolites, including small-chain fatty acids and bile acids. Investigation was repeated in metformin-treated germ-free (GF) mice and antibiotic-treated/GF mice receiving fecal microbiota transplantation (FMT) from metformin-treated SPF mice. Results: Metformin treatment reduced CNV size (P < 0.01) and decreased Iba1+ macrophage/microglial infiltration (P < 0.005). One hundred forty-five differentially expressed genes were identified in the metformin-treated group (P < 0.05) with a downregulation in pro-angiogenic genes Tie1, Pgf, and Gata2. Furthermore, metformin altered the gut microbiome in favor of Bifidobacterium and Akkermansia, with a significant increase in fecal levels of butyrate, succinate, and cholic acid. Metformin did not suppress CNV in GF mice but colonization of microbiome-depleted mice with metformin-derived FMT suppressed CNV. Conclusions: These data suggest that oral metformin suppresses CNV, the hallmark lesion of advanced neovascular AMD, via gut microbiome modulation.
Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Masculino , Feminino , Animais , Camundongos , Inibidores da Angiogênese , RNA Ribossômico 16S , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Retina , Neovascularização de Coroide/prevenção & controleRESUMO
BACKGROUND: Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a permissive gut microbiome, was identified in patients who develop CAs, favoring lipid polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels of proteins reflecting angiogenesis and inflammation were also previously correlated with CA and CA with symptomatic hemorrhage. METHODS: The plasma metabolome of CA patients and CA patients with symptomatic hemorrhage was assessed using liquid-chromatography mass spectrometry. Differential metabolites were identified using partial least squares-discriminant analysis (p < 0.05, FDR corrected). Interactions between these metabolites and the previously established CA transcriptome, microbiome, and differential proteins were queried for mechanistic relevance. Differential metabolites in CA patients with symptomatic hemorrhage were then validated in an independent, propensity matched cohort. A machine learning-implemented, Bayesian approach was used to integrate proteins, micro-RNAs and metabolites to develop a diagnostic model for CA patients with symptomatic hemorrhage. RESULTS: Here we identify plasma metabolites, including cholic acid and hypoxanthine distinguishing CA patients, while arachidonic and linoleic acids distinguish those with symptomatic hemorrhage. Plasma metabolites are linked to the permissive microbiome genes, and to previously implicated disease mechanisms. The metabolites distinguishing CA with symptomatic hemorrhage are validated in an independent propensity-matched cohort, and their integration, along with levels of circulating miRNAs, enhance the performance of plasma protein biomarkers (up to 85% sensitivity and 80% specificity). CONCLUSIONS: Plasma metabolites reflect CAs and their hemorrhagic activity. A model of their multiomic integration is applicable to other pathologies.
Cavernous angiomas (CAs) are clusters of abnormal blood vessels found in the brain or spinal cord. A blood test that could identify people with CAs that have recently bled would help determine who need surgery or closer medical monitoring. We looked at the blood of people with CAs to compare the levels of metabolites, a type of small molecule produced within the body, in those who had recently bled and those who had not. We found that some metabolites may contribute to CA and have an impact on CA symptoms. Monitoring the levels of these metabolites can determine whether there had been a recent bleed. In the future, drugs or other therapies could be developed that would block or change the levels of these molecules and possibly be used to treat CA disease.
RESUMO
Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.
Assuntos
MicroRNA Circulante , Hemangioma Cavernoso do Sistema Nervoso Central , MicroRNAs , Humanos , Camundongos , Animais , Teorema de Bayes , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteína KRIT1/genética , MicroRNAs/genéticaRESUMO
Bladder cancer (BC), a heterogeneous disease characterized by high recurrence rates, is diagnosed and monitored by cystoscopy. Accurate clinical staging based on biopsy remains a challenge, and additional, objective diagnostic tools are needed urgently. We used exosomal DNA (exoDNA) as an analyte to examine cancer-associated mutations and compared the diagnostic utility of exoDNA from urine and serum of individuals with BC. In contrast to urine exosomes from healthy individuals, urine exosomes from individuals with BC contained significant amounts of DNA. Whole-exome sequencing of DNA from matched urine and serum exosomes, bladder tumors, and normal tissue (peripheral blood mononuclear cells) identified exonic and 3' UTR variants in frequently mutated genes in BC, detectable in urine exoDNA and matched tumor samples. Further analyses identified somatic variants in driver genes, unique to urine exoDNA, possibly because of the inherent intra-tumoral heterogeneity of BC, which is not fully represented in random small biopsies. Multiple variants were also found in untranslated portions of the genome, such as microRNA (miRNA)-binding regions of the KRAS gene. Gene network analyses revealed that exoDNA is associated with cancer, inflammation, and immunity in BC exosomes. Our findings show utility of exoDNA as an objective, non-invasive strategy to identify novel biomarkers and targets for BC.
RESUMO
The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Retina/metabolismo , Animais , Degeneração Macular/metabolismo , Degeneração Macular/microbiologia , Masculino , Camundongos , Análise de Sequência de RNA , Transcriptoma/genéticaRESUMO
BACKGROUND: In biological and medical domain, the use of web services made the data and computation functionality accessible in a unified manner, which helped automate the data pipeline that was previously performed manually. Workflow technology is widely used in the orchestration of multiple services to facilitate in-silico research. Cancer Biomedical Informatics Grid (caBIG) is an information network enabling the sharing of cancer research related resources and caGrid is its underlying service-based computation infrastructure. CaBIG requires that services are composed and orchestrated in a given sequence to realize data pipelines, which are often called scientific workflows. RESULTS: CaGrid selected Taverna as its workflow execution system of choice due to its integration with web service technology and support for a wide range of web services, plug-in architecture to cater for easy integration of third party extensions, etc. The caGrid Workflow Toolkit (or the toolkit for short), an extension to the Taverna workflow system, is designed and implemented to ease building and running caGrid workflows. It provides users with support for various phases in using workflows: service discovery, composition and orchestration, data access, and secure service invocation, which have been identified by the caGrid community as challenging in a multi-institutional and cross-discipline domain. CONCLUSIONS: By extending the Taverna Workbench, caGrid Workflow Toolkit provided a comprehensive solution to compose and coordinate services in caGrid, which would otherwise remain isolated and disconnected from each other. Using it users can access more than 140 services and are offered with a rich set of features including discovery of data and analytical services, query and transfer of data, security protections for service invocations, state management in service interactions, and sharing of workflows, experiences and best practices. The proposed solution is general enough to be applicable and reusable within other service-computing infrastructures that leverage similar technology stack.