Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619007

RESUMO

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Assuntos
Energia Solar , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mudança Climática , Poluição Ambiental , Tempo (Meteorologia)
2.
Environ Sci Technol ; 51(3): 1321-1329, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27936633

RESUMO

FTIR/smog chamber experiments and ab initio quantum calculations were performed to investigate the atmospheric chemistry of (CF3)2CFCN, a proposed replacement compound for the industrially important sulfur hexafluoride, SF6. The present study determined k(Cl + (CF3)2CFCN) = (2.33 ± 0.87) × 10-17, k(OH + (CF3)2CFCN) = (1.45 ± 0.25) × 10-15, and k(O3 + (CF3)2CFCN) ≤ 6 × 10-24 cm3 molecule-1 s-1, respectively, in 700 Torr of N2 or air diluent at 296 ± 2 K. The main atmospheric sink for (CF3)2CFCN was determined to be reaction with OH radicals. Quantum chemistry calculations, supported by experimental evidence, shows that the (CF3)2CFCN + OH reaction proceeds via OH addition to -C(≡N), followed by O2 addition to -C(OH)═N·, internal H-shift, and OH regeneration. The sole atmospheric degradation products of (CF3)2CFCN appear to be NO, COF2, and CF3C(O)F. The atmospheric lifetime of (CF3)2CFCN is approximately 22 years. The integrated cross section (650-1500 cm-1) for (CF3)2CFCN is (2.22 ± 0.11) × 10-16 cm2 molecule-1 cm-1 which results in a radiative efficiency of 0.217 W m-2 ppb-1. The 100-year Global Warming Potential (GWP) for (CF3)2CFCN was calculated as 1490, a factor of 15 less than that of SF6.


Assuntos
Cloro/química , Radical Hidroxila/química , Aquecimento Global
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA