Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8180, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589431

RESUMO

N6-methyladenosine (6 mA) is the most common internal modification in eukaryotic mRNA. Mass spectrometry and site-directed mutagenesis, two of the most common conventional approaches, have been shown to be laborious and challenging. In recent years, there has been a rising interest in analyzing RNA sequences to systematically investigate mutated locations. Using novel methods for feature development, the current work aimed to identify 6 mA locations in RNA sequences. Following the generation of these novel features, they were used to train an ensemble of models using methods such as stacking, boosting, and bagging. The trained ensemble models were assessed using an independent test set and k-fold cross validation. When compared to baseline predictors, the suggested model performed better and showed improved ratings across the board for key measures of accuracy.


Assuntos
Adenosina , RNA , RNA/genética , RNA Mensageiro , Adenosina/genética , Projetos de Pesquisa
2.
Anal Biochem ; 676: 115247, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437648

RESUMO

Pseudouridine (ψ) is reported to occur frequently in all types of RNA. This uridine modification has been shown to be essential for processes such as RNA stability and stress response. Also, it is linked to a few human diseases, such as prostate cancer, anemia, etc. A few laboratory techniques, such as Pseudo-seq and N3-CMC-enriched Pseudouridine sequencing (CeU-Seq) are used for detecting ψ sites. However, these are laborious and drawn-out methods. The convenience of sequencing data has enabled the development of computationally intelligent models for improving ψ site identification methods. The proposed work provides a prediction model for the identification of ψ sites through popular ensemble methods such as stacking, bagging, and boosting. Features were obtained through a novel feature extraction mechanism with the assimilation of statistical moments, which were used to train ensemble models. The cross-validation test and independent set test were used to evaluate the precision of the trained models. The proposed model outperformed the preexisting predictors and revealed 87% accuracy, 0.90 specificity, 0.85 sensitivity, and a 0.75 Matthews correlation coefficient. A web server has been built and is available publicly for the researchers at https://taseersuleman-y-test-pseu-pred-c2wmtj.streamlit.app/.


Assuntos
Pseudouridina , RNA , Humanos , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA
3.
Digit Health ; 9: 20552076231165963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009307

RESUMO

Background: Dihydrouridine (D) is one of the most significant uridine modifications that have a prominent occurrence in eukaryotes. The folding and conformational flexibility of transfer RNA (tRNA) can be attained through this modification. Objective: The modification also triggers lung cancer in humans. The identification of D sites was carried out through conventional laboratory methods; however, those were costly and time-consuming. The readiness of RNA sequences helps in the identification of D sites through computationally intelligent models. However, the most challenging part is turning these biological sequences into distinct vectors. Methods: The current research proposed novel feature extraction mechanisms and the identification of D sites in tRNA sequences using ensemble models. The ensemble models were then subjected to evaluation using k-fold cross-validation and independent testing. Results: The results revealed that the stacking ensemble model outperformed all the ensemble models by revealing 0.98 accuracy, 0.98 specificity, 0.97 sensitivity, and 0.92 Matthews Correlation Coefficient. The proposed model, iDHU-Ensem, was also compared with pre-existing predictors using an independent test. The accuracy scores have shown that the proposed model in this research study performed better than the available predictors. Conclusion: The current research contributed towards the enhancement of D site identification capabilities through computationally intelligent methods. A web-based server, iDHU-Ensem, was also made available for the researchers at https://taseersuleman-idhu-ensem-idhu-ensem.streamlit.app/.

4.
PeerJ ; 10: e14104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36320563

RESUMO

Background: Dihydrouridine (D) is a modified transfer RNA post-transcriptional modification (PTM) that occurs abundantly in bacteria, eukaryotes, and archaea. The D modification assists in the stability and conformational flexibility of tRNA. The D modification is also responsible for pulmonary carcinogenesis in humans. Objective: For the detection of D sites, mass spectrometry and site-directed mutagenesis have been developed. However, both are labor-intensive and time-consuming methods. The availability of sequence data has provided the opportunity to build computational models for enhancing the identification of D sites. Based on the sequence data, the DHU-Pred model was proposed in this study to find possible D sites. Methodology: The model was built by employing comprehensive machine learning and feature extraction approaches. It was then validated using in-demand evaluation metrics and rigorous experimentation and testing approaches. Results: The DHU-Pred revealed an accuracy score of 96.9%, which was considerably higher compared to the existing D site predictors. Availability and Implementation: A user-friendly web server for the proposed model was also developed and is freely available for the researchers.


Assuntos
Biologia Computacional , RNA de Transferência , Humanos , Biologia Computacional/métodos , Aprendizado de Máquina , Eucariotos
5.
Comb Chem High Throughput Screen ; 25(14): 2473-2484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35718969

RESUMO

BACKGROUND: The process of nucleotides modification or methyl groups addition to nucleotides is known as post-transcriptional modification (PTM). 1-methyladenosine (m1A) is a type of PTM formed by adding a methyl group to the nitrogen at the 1st position of the adenosine base. Many human disorders are associated with m1A, which is widely found in ribosomal RNA and transfer RNA. OBJECTIVE: The conventional methods such as mass spectrometry and site-directed mutagenesis proved to be laborious and burdensome. Systematic identification of modified sites from RNA sequences is gaining much attention nowadays. Consequently, an extreme gradient boost predictor, m1A-Pred, is developed in this study for the prediction of modified m1A sites. METHODS: The current study involves the extraction of position and composition-based properties within nucleotide sequences. The extraction of features helps in the development of the features vector. Statistical moments were endorsed for dimensionality reduction in the obtained features. RESULTS: Through a series of experiments using different computational models and evaluation methods, it was revealed that the proposed predictor, m1A-pred, proved to be the most robust and accurate model for the identification of modified sites. AVAILABILITY AND IMPLEMENTATION: To enhance the research on m1A sites, a friendly server was also developed, which was the final phase of this research.


Assuntos
Inteligência Artificial , RNA , Humanos , RNA/genética , RNA/química , Sequência de Bases , Nucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA