Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
NPJ Precis Oncol ; 8(1): 10, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200223

RESUMO

The consensus molecular subtypes (CMS) of colorectal cancer (CRC) is the most widely-used gene expression-based classification and has contributed to a better understanding of disease heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity restricts its clinical application, stressing the necessity of further characterizing the composition and architecture of CRC. Here, we used Spatial Transcriptomics (ST) in combination with single-cell RNA sequencing (scRNA-seq) to decipher the spatially resolved cellular and molecular composition of CRC. In addition to mapping the intratumoral heterogeneity of CMS and their microenvironment, we identified cell communication events in the tumor-stroma interface of CMS2 carcinomas. This includes tumor growth-inhibiting as well as -activating signals, such as the potential regulation of the ETV4 transcriptional activity by DCN or the PLAU-PLAUR ligand-receptor interaction. Our study illustrates the potential of ST to resolve CRC molecular heterogeneity and thereby help advance personalized therapy.

2.
Sci Data ; 8(1): 296, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753956

RESUMO

With the rapid advancement of sequencing technologies, next generation sequencing (NGS) analysis has been widely applied in cancer genomics research. More recently, NGS has been adopted in clinical oncology to advance personalized medicine. Clinical applications of precision oncology require accurate tests that can distinguish tumor-specific mutations from artifacts introduced during NGS processes or data analysis. Therefore, there is an urgent need to develop best practices in cancer mutation detection using NGS and the need for standard reference data sets for systematically measuring accuracy and reproducibility across platforms and methods. Within the SEQC2 consortium context, we established paired tumor-normal reference samples and generated whole-genome (WGS) and whole-exome sequencing (WES) data using sixteen library protocols, seven sequencing platforms at six different centers. We systematically interrogated somatic mutations in the reference samples to identify factors affecting detection reproducibility and accuracy in cancer genomes. These large cross-platform/site WGS and WES datasets using well-characterized reference samples will represent a powerful resource for benchmarking NGS technologies, bioinformatics pipelines, and for the cancer genomics studies.


Assuntos
Sequenciamento do Exoma , Genoma Humano , Neoplasias/genética , Sequenciamento Completo do Genoma , Benchmarking , Linhagem Celular Tumoral , Biologia Computacional , Genômica , Humanos , Medicina de Precisão
3.
Nat Biotechnol ; 39(9): 1141-1150, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504346

RESUMO

Clinical applications of precision oncology require accurate tests that can distinguish true cancer-specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumor-normal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers. Using whole-genome sequencing (WGS) and whole-exome sequencing (WES), we evaluated the reproducibility of different sample types with varying input amount and tumor purity, and multiple library construction protocols, followed by processing with nine bioinformatics pipelines. We found that read coverage and callers affected both WGS and WES reproducibility, but WES performance was influenced by insert fragment size, genomic copy content and the global imbalance score (GIV; G > T/C > A). Finally, taking into account library preparation protocol, tumor content, read coverage and bioinformatics processes concomitantly, we recommend actionable practices to improve the reproducibility and accuracy of NGS experiments for cancer mutation detection.


Assuntos
Benchmarking , Sequenciamento do Exoma/normas , Neoplasias/genética , Análise de Sequência de DNA/normas , Sequenciamento Completo do Genoma/normas , Linhagem Celular , Linhagem Celular Tumoral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/patologia , Reprodutibilidade dos Testes
4.
Nat Biotechnol ; 39(9): 1151-1160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504347

RESUMO

The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.


Assuntos
Benchmarking , Neoplasias da Mama/genética , Análise Mutacional de DNA/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento Completo do Genoma/normas , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Células Germinativas , Humanos , Mutação , Padrões de Referência , Reprodutibilidade dos Testes
5.
Genes Chromosomes Cancer ; 59(2): 96-105, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31469468

RESUMO

Tenosynovial giant cell tumors (TGCTs) are characterized by rearrangements of CSF1, thought to drive overexpression of macrophage colony-stimulating factor (CSF1), thereby promoting tumor growth and recruitment of non-neoplastic mononuclear and multinucleated inflammatory cells. While fusions to collagen promoters have been described, the mechanism of CSF1 overexpression has been unclear in a majority of cases. Two cohorts of TGCT were investigated for CSF1 rearrangements using fluorescence in situ hybridization (FISH) and either RNA-seq or DNA-seq with Sanger validation. The study comprised 39 patients, including 13 localized TGCT, 21 diffuse TGCT, and five of unspecified type. CSF1 rearrangements were identified by FISH in 30 cases: 13 translocations, 17 3' deletions. Sequencing confirmed CSF1 breakpoints in 28 cases; in all 28 the breakpoint was found to be downstream of exon 5, replacing or deleting a long 3' UTR containing known miRNA and AU-rich element negative regulatory sequences. We also confirmed the presence of CBL exon 8-9 mutations in six of 21 cases. In conclusion, TGCT in our large cohort were characterized by variable alterations, all of which led to truncation of the 3' end of CSF1, instead of the COL6A3-CSF1 fusions previously reported in some TGCTs. The diversity of fusion partners but consistent integrity of CSF1 functional domains encoded by exons 1-5 support a hypothesis that CSF1 overexpression results from transcription of a truncated form of CSF1 lacking 3' negative regulatory sequences. The presence of CBL mutations affecting the linker and RING finger domain suggests an alternative mechanism for increased CSF1/CSF1R signaling in some cases.


Assuntos
Tumor de Células Gigantes de Bainha Tendinosa/genética , Fator Estimulador de Colônias de Macrófagos/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Estudos de Coortes , Éxons , Feminino , Tumor de Células Gigantes de Bainha Tendinosa/diagnóstico , Tumor de Células Gigantes de Bainha Tendinosa/metabolismo , Humanos , Hibridização in Situ Fluorescente/métodos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Translocação Genética
6.
Am J Hum Genet ; 100(5): 737-750, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28457472

RESUMO

Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals.


Assuntos
Catepsina B/metabolismo , Elementos Facilitadores Genéticos , Eritema/genética , Duplicação Gênica , Regulação da Expressão Gênica , Ceratose/genética , Dermatopatias Genéticas/genética , Estudos de Casos e Controles , Catepsina B/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 8/genética , Variações do Número de Cópias de DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Epiderme/metabolismo , Epigenômica , Eritema/epidemiologia , Feminino , Marcadores Genéticos , Humanos , Queratinócitos/metabolismo , Ceratose/epidemiologia , Células MCF-7 , Masculino , Noruega/epidemiologia , Linhagem , Dermatopatias Genéticas/epidemiologia , África do Sul/epidemiologia
7.
Nat Commun ; 8: 14262, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186126

RESUMO

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


Assuntos
Biomarcadores Tumorais/genética , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
8.
Nat Genet ; 47(9): 1020-1029, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214592

RESUMO

TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.


Assuntos
Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Técnicas de Cocultura , Estudos de Coortes , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Estudos de Associação Genética , Genômica , Humanos , Cadeias Leves Substitutas da Imunoglobulina/genética , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Deleção de Sequência , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS One ; 9(10): e111006, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347188

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. METHODOLOGY AND RESULTS: In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. CONCLUSIONS: We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J on the one hand and PWD/PhJ on the other.


Assuntos
Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Camundongos , Hepatopatia Gordurosa não Alcoólica , Fenótipo , Proteômica , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Índice de Gravidade de Doença , Transdução de Sinais
10.
BMC Genomics ; 15: 675, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25113896

RESUMO

BACKGROUND: Gene expression analysis by RNA sequencing is now widely used in a number of applications surveying the whole transcriptomes of cells and tissues. The recent introduction of ribosomal RNA depletion protocols, such as RiboZero, has extended the view of the polyadenylated transcriptome to the poly(A)- fraction of the RNA. However, substantial amounts of intronic transcriptional activity has been reported in RiboZero protocols, raising issues regarding their potential nuclear origin and the impact on the actual sequence depth in exonic regions. RESULTS: Using HEK293 human cells as source material, we assessed here the impact of the two commonly used RNA extraction methods and of the library construction protocols (rRNA depletion versus mRNA) on 1) the relative abundance of intronic reads and 2) on the estimation of gene expression values. We benchmarked the rRNA depletion-based sequencing with a specific analysis of the cytoplasmic and nuclear transcriptome fractions, suggesting that the large majority of the intronic reads correspond to unprocessed nuclear transcripts rather than to independent transcriptional units. We show that Qiagen or TRIzol extraction methods retain differentially nuclear RNA species, and that consequently, rRNA depletion-based RNA sequencing protocols are particularly sensitive to the extraction methods. CONCLUSIONS: We could show that the combination of Trizol-based RNA extraction with rRNA depletion sequencing protocols led to the largest fraction of intronic reads, after the sequencing of the nuclear transcriptome. We discuss here the impact of the various strategies on gene expression and alternative splicing estimation measures. Further, we propose guidelines and a double selection strategy for minimizing the expression biases, without loss of information.


Assuntos
RNA Mensageiro/isolamento & purificação , Perfilação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Splicing de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/isolamento & purificação , RNA Mensageiro/genética , Análise de Sequência de RNA , Transcriptoma
11.
Sci Signal ; 7(325): rs3, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24825921

RESUMO

The DNA damage response (DDR) is a vast signaling network that is robustly activated by DNA double-strand breaks, the critical lesion induced by ionizing radiation (IR). Although much of this response operates at the protein level, a critical component of the network sustains many DDR branches by modulating the cellular transcriptome. Using deep sequencing, we delineated three layers in the transcriptional response to IR in human breast cancer cells: changes in the expression of genes encoding proteins or long noncoding RNAs, alterations in genomic binding by key transcription factors, and dynamics of epigenetic markers of active promoters and enhancers. We identified protein-coding and previously unidentified noncoding genes that were responsive to IR, and demonstrated that IR-induced transcriptional dynamics was mediated largely by the transcription factors p53 and nuclear factor κB (NF-κB) and was primarily dependent on the kinase ataxia-telangiectasia mutated (ATM). The resultant data set provides a rich resource for understanding a basic, underlying component of a critical cellular stress response.


Assuntos
Epigênese Genética/efeitos da radiação , Redes Reguladoras de Genes/efeitos da radiação , Radiação Ionizante , Transcriptoma/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Nature ; 510(7506): 537-41, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24847876

RESUMO

Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.


Assuntos
Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Meduloblastoma/genética , Análise de Sequência de DNA/métodos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Feminino , Genoma/genética , Histonas/metabolismo , Humanos , Meduloblastoma/patologia , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Cell ; 155(3): 567-81, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24139898

RESUMO

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


Assuntos
Cromossomos Humanos X , Mutação , Neoplasias/genética , Inativação do Cromossomo X , Adulto , Idoso , Replicação do DNA , Feminino , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Polimorfismo de Nucleotídeo Único , Fase S
14.
Nat Genet ; 45(8): 927-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817572

RESUMO

Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor trkB/genética , Animais , Astrocitoma/metabolismo , Sequência de Bases , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 6 , Cromossomos Humanos Par 9 , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Moleculares , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Conformação Proteica , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor trkB/metabolismo
15.
Cell Rep ; 3(4): 1321-33, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23602564

RESUMO

The interactions of Meis, Prep, and Pbx1 TALE homeoproteins with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA-binding sequences, Prep associating mostly with promoters and housekeeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless coregulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. During evolution, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination.


Assuntos
DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Sítios de Ligação , Embrião de Mamíferos/metabolismo , Genoma , Proteínas de Homeodomínio/genética , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Regiões Promotoras Genéticas , Ligação Proteica , Timócitos/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
16.
Cancer Cell ; 23(2): 159-70, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23410972

RESUMO

Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA.


Assuntos
Rearranjo Gênico , Genômica , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Serina Endopeptidases/genética , Transativadores/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Regulador Transcricional ERG
17.
Nature ; 488(7409): 100-5, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22832583

RESUMO

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Assuntos
Neoplasias Cerebelares/genética , Genoma Humano/genética , Meduloblastoma/genética , Envelhecimento/genética , Sequência de Aminoácidos , Transformação Celular Neoplásica , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/patologia , Criança , Cromatina/metabolismo , Cromossomos Humanos/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genômica , Proteínas Hedgehog/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Histona Desmetilases/genética , Humanos , Meduloblastoma/classificação , Meduloblastoma/diagnóstico , Meduloblastoma/patologia , Metilação , Mutação/genética , Taxa de Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Receptores Patched , Receptor Patched-1 , Fosfoproteínas Fosfatases/genética , Poliploidia , Receptores de Superfície Celular/genética , Análise de Sequência de RNA , Transdução de Sinais , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
18.
J Biol Chem ; 286(26): 23521-32, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21555518

RESUMO

The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ciclo Celular/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Regulação da Expressão Gênica/fisiologia , Estresse Oxidativo/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Elementos de Resposta/fisiologia
19.
Science ; 321(5891): 956-60, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18599741

RESUMO

The functional complexity of the human transcriptome is not yet fully elucidated. We report a high-throughput sequence of the human transcriptome from a human embryonic kidney and a B cell line. We used shotgun sequencing of transcripts to generate randomly distributed reads. Of these, 50% mapped to unique genomic locations, of which 80% corresponded to known exons. We found that 66% of the polyadenylated transcriptome mapped to known genes and 34% to nonannotated genomic regions. On the basis of known transcripts, RNA-Seq can detect 25% more genes than can microarrays. A global survey of messenger RNA splicing events identified 94,241 splice junctions (4096 of which were previously unidentified) and showed that exon skipping is the most prevalent form of alternative splicing.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Genoma Humano , Sítios de Splice de RNA , RNA Mensageiro/genética , Análise de Sequência de RNA , Linhagem Celular , Linhagem Celular Tumoral , Biologia Computacional , DNA Complementar , DNA Intergênico , Éxons , Humanos , Íntrons , Análise de Sequência com Séries de Oligonucleotídeos , RNA Polimerase II/metabolismo
20.
Biomed Microdevices ; 9(3): 307-14, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17203381

RESUMO

The analysis of gene expression is an essential element of functional genomics. Expression analysis is mainly based on DNA microarrays due to highly parallel readout and high throughput. Quantitative PCR (qPCR) based expression profiling is the gold standard for the precise monitoring of selected genes, and therefore used for validation of microarray data. Doing qPCR-based expression analysis in an array-like format can combine the higher sensitivity and accuracy of the qPCR methodology with a high data density at relatively low costs. This paper describes the development of an open-well based miniaturized platform for liquid PCR-based assays on the nanoliter scale using cost-effective polypropylene micro reactors (microPCR Chip). We show the quantification ability and reliability of qPCR in 200 nl with the microPCR chip down to 5 starting target molecules using TaqMan chemistry. An RNA expression analysis of four genes in mouse brain, liver and kidney tissues showed similar results in 200 nl as compared to standard 10 microl assays. The high sensitivity and quantification capability of the microPCR chip platform developed herein makes it a promising technology for performing high-throughput qPCR-based analysis in the nanoliter volume range.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Análise em Microsséries/instrumentação , Microquímica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Reação em Cadeia da Polimerase/instrumentação , Animais , Perfilação da Expressão Gênica/métodos , Camundongos , Análise em Microsséries/métodos , Microquímica/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/métodos , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA