RESUMO
Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.
Assuntos
Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Células Mieloides/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Osteopontina/metabolismo , Biglicano/metabolismoRESUMO
It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow-derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody-drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. SIGNIFICANCE: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Biomarcadores Tumorais/metabolismo , Camptotecina/análogos & derivados , Neuregulina-1/metabolismo , Organoides/patologia , Neoplasias da Próstata/patologia , Receptor ErbB-3/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Camptotecina/farmacologia , Proliferação de Células , Seguimentos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neuregulina-1/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prognóstico , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Better blood tests to elucidate the behaviour of metastatic castration-resistant prostate cancer (mCRPC) are urgently needed to drive therapeutic decisions. Plasma cell-free DNA (cfDNA) comprises normal and circulating tumour DNA (ctDNA). Low-pass whole-genome sequencing (lpWGS) of ctDNA can provide information on mCRPC behaviour. OBJECTIVE: To validate and clinically qualify plasma lpWGS for mCRPC. DESIGN, SETTING, AND PARTICIPANTS: Plasma lpWGS data were obtained for mCRPC patients consenting to optional substudies of two prospective phase 3 trials (FIRSTANA and PROSELICA). In FIRSTANA, chemotherapy-naïve patients were randomised to treatment with docetaxel (75 mg/m2) or cabazitaxel (20 or 25 mg/m2). In PROSELICA, patients previously treated with docetaxel were randomised to 20 or 25 mg/m2 cabazitaxel. lpWGS data were generated from 540 samples from 188 mCRPC patients acquired at four different time points (screening, cycle 1, cycle 4, and end of study). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: lpWGS data for ctDNA were evaluated for prognostic, response, and tumour genomic measures. Associations with response and survival data were determined for tumour fraction. Genomic biomarkers including large-scale transition (LST) scores were explored in the context of prior treatments. RESULTS AND LIMITATIONS: Plasma tumour fraction was prognostic for overall survival in univariable and stratified multivariable analyses (hazard ratio 1.75, 95% confidence interval 1.08-2.85; p = 0.024) and offered added value compared to existing biomarkers (C index 0.722 vs 0.709; p = 0.021). Longitudinal changes were associated with drug response. PROSELICA samples were enriched for LSTs (p = 0.029) indicating genomic instability, and this enrichment was associated with prior abiraterone and enzalutamide treatment but not taxane or radiation therapy. Higher LSTs were correlated with losses of RB1/RNASEH2B, independent of BRCA2 loss. CONCLUSIONS: Plasma lpWGS of ctDNA describes CRPC behaviour, providing prognostic and response data of clinical relevance. The added prognostic value of the ctDNA fraction over established biomarkers should be studied further. PATIENT SUMMARY: We studied tumour DNA in blood samples from patients with prostate cancer. We found that levels of tumour DNA in blood were indicative of disease prognosis, and that changes after treatment could be detected. We also observed a "genetic scar" in the results that was associated with certain previous treatments. This test allows an assessment of tumour activity that can complement existing tests, offer insights into drug response, and detect clinically relevant genetic changes.
Assuntos
DNA Tumoral Circulante , Preparações Farmacêuticas , Neoplasias de Próstata Resistentes à Castração , DNA Tumoral Circulante/genética , DNA de Neoplasias , Docetaxel , Humanos , Masculino , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genéticaRESUMO
BACKGROUND: CD38, a druggable ectoenzyme, is involved in the generation of adenosine, which is implicated in tumour immune evasion. Its expression and role in prostate tumour-infiltrating immune cells (TIICs) have not been elucidated. OBJECTIVE: To characterise CD38 expression on prostate cancer (PC) epithelial cells and TIICs, and to associate this expression with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS: RNAseq from 159 patients with metastatic castration-resistant prostate cancer (mCRPC) in the International Stand Up To Cancer/Prostate Cancer Foundation (SU2C/PCF) cohort and 171 mCRPC samples taken from 63 patients in the Fred Hutchinson Cancer Research Centre cohort were analysed. CD38 expression was immunohistochemically scored by a validated assay on 51 castration-resistant PC (CRPC) and matching, same-patient castration-sensitive PC (CSPC) biopsies obtained between 2016 and 2018, and was associated with retrospectively collected clinical data. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: mCRPC transcriptomes were analysed for associations between CD38 expression and gene expression signatures. Multiplex immunofluorescence determined CD38 expression in PC biopsies. Differences in CD38+ TIIC densities between CSPC and CRPC biopsies were analysed using a negative binomial mixed model. Differences in the proportions of CD38+ epithelial cells between non-matched benign prostatic epithelium and PC were compared using Fisher's exact test. Differences in the proportions of biopsies containing CD38+ tumour epithelial cells between matched CSPC and CRPC biopsies were compared by McNemar's test. Univariable and multivariable survival analyses were performed using Cox regression models. RESULTS AND LIMITATIONS: CD38 mRNA expression in mCRPC was most significantly associated with upregulated immune signalling pathways. CD38 mRNA expression was associated with interleukin (IL)-12, IL-23, and IL-27 signalling signatures as well as immunosuppressive adenosine signalling and T cell exhaustion signatures. CD38 protein was frequently expressed on phenotypically diverse TIICs including B cells and myeloid cells, but largely absent from tumour epithelial cells. CD38+ TIIC density increased with progression to CRPC and was independently associated with worse overall survival. Future studies are required to dissect TIIC CD38 function. CONCLUSIONS: CD38+ prostate TIICs associate with worse survival and immunosuppressive mechanisms. The role of CD38 in PC progression warrants investigation as insights into its functions may provide rationale for CD38 targeting in lethal PC. PATIENT SUMMARY: CD38 is expressed on the surface of white blood cells surrounding PC cells. These cells may impact PC growth and treatment resistance. Patients with PC with more CD38-expressing white blood cells are more likely to die earlier.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Adenosina , Humanos , Masculino , Próstata , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , RNA Mensageiro , Estudos RetrospectivosRESUMO
The genomics of primary prostate cancer differ from those of metastatic castration-resistant prostate cancer (mCRPC). We studied genomic aberrations in primary prostate cancer biopsies from patients who developed mCRPC, also studying matching, same-patient, diagnostic, and mCRPC biopsies following treatment. We profiled 470 treatment-naive prostate cancer diagnostic biopsies and, for 61 cases, mCRPC biopsies, using targeted and low-pass whole-genome sequencing (n = 52). Descriptive statistics were used to summarize mutation and copy number profile. Prevalence was compared using Fisher's exact test. Survival correlations were studied using log-rank test. TP53 (27%) and PTEN (12%) and DDR gene defects (BRCA2 7%; CDK12 5%; ATM 4%) were commonly detected. TP53, BRCA2, and CDK12 mutations were markedly more common than described in the TCGA cohort. Patients with RB1 loss in the primary tumor had a worse prognosis. Among 61 men with matched hormone-naive and mCRPC biopsies, differences were identified in AR, TP53, RB1, and PI3K/AKT mutational status between same-patient samples. In conclusion, the genomics of diagnostic prostatic biopsies acquired from men who develop mCRPC differ from those of the nonlethal primary prostatic cancers. RB1/TP53/AR aberrations are enriched in later stages, but the prevalence of DDR defects in diagnostic samples is similar to mCRPC.
Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica , Proteínas de Neoplasias , Neoplasias de Próstata Resistentes à Castração , Biópsia , Intervalo Livre de Doença , Humanos , Masculino , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Taxa de SobrevidaRESUMO
BACKGROUND: Prostate-specific membrane antigen (PSMA; folate hydrolase) prostate cancer (PC) expression has theranostic utility. OBJECTIVE: To elucidate PC PSMA expression and associate this with defective DNA damage repair (DDR). DESIGN, SETTING, AND PARTICIPANTS: Membranous PSMA (mPSMA) expression was scored immunohistochemically from metastatic castration-resistant PC (mCRPC) and matching, same-patient, diagnostic biopsies, and correlated with next-generation sequencing (NGS) and clinical outcome data. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Expression of mPSMA was quantitated by modified H-score. Patient DNA was tested by NGS. Gene expression and activity scores were determined from mCRPC transcriptomes. Statistical correlations utilised Wilcoxon signed rank tests, survival was estimated by Kaplan-Meier test, and sample heterogeneity was quantified by Shannon's diversity index. RESULTS AND LIMITATIONS: Expression of mPSMA at diagnosis was associated with higher Gleason grade (p=0.04) and worse overall survival (p=0.006). Overall, mPSMA expression levels increased at mCRPC (median H-score [interquartile range]: castration-sensitive prostate cancer [CSPC] 17.5 [0.0-60.0] vs mCRPC 55.0 [2.8-117.5]). Surprisingly, 42% (n=16) of CSPC and 27% (n=16) of mCRPC tissues sampled had no detectable mPSMA (H-score <10). Marked intratumour heterogeneity of mPSMA expression, with foci containing no detectable PSMA, was observed in all mPSMA expressing CSPC (100%) and 37 (84%) mCRPC biopsies. Heterogeneous intrapatient mPSMA expression between metastases was also observed, with the lowest expression in liver metastases. Tumours with DDR had higher mPSMA expression (p=0.016; 87.5 [25.0-247.5] vs 20 [0.3-98.8]; difference in medians 60 [5.0-95.0]); validation cohort studies confirmed higher mPSMA expression in patients with deleterious aberrations in BRCA2 (p<0.001; median H-score: 300 [165-300]; difference in medians 195.0 [100.0-270.0]) and ATM (p=0.005; 212.5 [136.3-300]; difference in medians 140.0 [55.0-200]) than in molecularly unselected mCRPC biopsies (55.0 [2.75-117.5]). Validation studies using mCRPC transcriptomes corroborated these findings, also indicating that SOX2 high tumours have low PSMA expression. CONCLUSIONS: Membranous PSMA expression is upregulated in some but not all PCs, with mPSMA expression demonstrating marked inter- and intrapatient heterogeneity. DDR aberrations are associated with higher mPSMA expression and merit further evaluation as predictive biomarkers of response for PSMA-targeted therapies in larger, prospective cohorts. PATIENT SUMMARY: Through analysis of prostate cancer samples, we report that the presence of prostate-specific membrane antigen (PSMA) is extremely variable both within one patient and between different patients. This may limit the usefulness of PSMA scans and PSMA-targeted therapies. We show for the first time that prostate cancers with defective DNA repair produce more PSMA and so may respond better to PSMA-targeting treatments.
Assuntos
Antígenos de Superfície/biossíntese , Reparo do DNA , Glutamato Carboxipeptidase II/biossíntese , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antígenos de Superfície/análise , Glutamato Carboxipeptidase II/análise , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/química , Estudos RetrospectivosRESUMO
BACKGROUND: Detection of androgen receptor splice variant-7 (AR-V7) mRNA in circulating tumour cells (CTCs) is associated with worse outcome in metastatic castration-resistant prostate cancer (mCRPC). However, studies rarely report comparisons with CTC counts and biopsy AR-V7 protein expression. OBJECTIVE: To determine the reproducibility of AdnaTest CTC AR-V7 testing, and associations with clinical characteristics, CellSearch CTC counts, tumour biopsy AR-V7 protein expression and overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: CTC AR-V7 status was determined for 227 peripheral blood samples, from 181 mCRPC patients with CTC counts (202 samples; 136 patients) and matched mCRPC biopsies (65 samples; 58 patients). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: CTC AR-V7 status was associated with clinical characteristics, CTC counts, and tissue biopsy AR-V7 protein expression. The association of CTC AR-V7 status and other baseline variables with OS was determined. RESULTS AND LIMITATIONS: Of the samples, 35% were CTC+/AR-V7+. CTC+/AR-V7+ samples had higher CellSearch CTC counts (median CTC; interquartile range [IQR]: 60, 19-184 vs 9, 2-64; Mann-Whitney test p<0.001) and biopsy AR-V7 protein expression (median H-score, IQR: 100, 63-148 vs 15, 0-113; Mann-Whitney test p=0.004) than CTC+/AR-V7- samples. However, both CTC- (63%) and CTC+/AR-V7- (62%) patients had detectable AR-V7 protein in contemporaneous biopsies. After accounting for baseline characteristics, there was shorter OS in CTC+/AR-V7+ patients than in CTC- patients (hazard ratio [HR] 2.13; 95% confidence interval [CI] 1.23-3.71; p=0.02); surprisingly, there was no evidence that CTC+/AR-V7+ patients had worse OS than CTC+/AR-V7- patients (HR 1.26; 95% CI 0.73-2.17; p=0.4). A limitation of this study was the heterogeneity of treatment received. CONCLUSIONS: Studies reporting the prognostic relevance of CTC AR-V7 status must account for CTC counts. Discordant CTC AR-V7 results and AR-V7 protein expression in matched, same-patient biopsies are reported. PATIENT SUMMARY: Liquid biopsies that determine circulating tumour cell androgen receptor splice variant-7 status have the potential to impact treatment decisions in metastatic castration-resistant prostate cancer patients. Robust clinical qualification of these assays is required before their routine use.
Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos/genética , Processamento Alternativo , Biópsia/métodos , Contagem de Células/métodos , Resistencia a Medicamentos Antineoplásicos , Técnicas Genéticas , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/genética , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genética , Reprodutibilidade dos TestesRESUMO
Platinum-based regimens have not been proved to increase survival from advanced prostate cancer (PCa). Incontrovertible evidence that a proportion of prostate cancers have homologous recombination DNA (HRD) repair defects, and that such genomic aberrations are synthetically lethal with both poly(ADP)-ribose polymerase inhibition and platinum, has increased interest in the utilisation of these drugs against a subset of these diseases. Here in we report three patients with advanced castration-resistant PCa with HRD defects having exceptional responses to carboplatin.
Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Carboplatina/uso terapêutico , Distúrbios no Reparo do DNA/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Reparo de DNA por Recombinação/genética , Adenocarcinoma/genética , Adenocarcinoma/secundário , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/secundárioRESUMO
PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) is a lethal but clinically heterogeneous disease, with patients having variable benefit from endocrine and cytotoxic treatments. Intrapatient genomic heterogeneity could be a contributing factor to this clinical heterogeneity. Here, we used whole-genome sequencing (WGS) to investigate genomic heterogeneity in 21 previously treated CRPC metastases from 10 patients to investigate intrapatient molecular heterogeneity (IPMH).Experimental Design: WGS was performed on topographically separate metastases from patients with advanced metastatic prostate cancer. IPMH of the RB1 gene was identified and further evaluated by FISH and IHC assays. RESULTS: WGS identified limited IPMH for putative driver events. However, heterogeneous genomic aberrations of RB1 were detected. We confirmed the presence of these RB1 somatic copy-number aberrations, initially identified by WGS, with FISH, and identified novel structural variants involving RB1 in 6 samples from 3 of these 10 patients (30%; 3/10). WGS uncovered a novel deleterious RB1 structural lesion constituted of an intragenic tandem duplication involving multiple exons and associating with protein loss. Using RB1 IHC in a large series of mCRPC biopsies, we identified heterogeneous expression in approximately 28% of mCRPCs. CONCLUSIONS: mCRPCs have a high prevalence of RB1 genomic aberrations, with structural variants, including rearrangements, being common. Intrapatient genomic and expression heterogeneity favors RB1 aberrations as late, subclonal events that increase in prevalence due to treatment-selective pressures.
Assuntos
Biomarcadores Tumorais , Heterogeneidade Genética , Variação Genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Understanding the integrated immunogenomic landscape of advanced prostate cancer (APC) could impact stratified treatment selection. METHODS: Defective mismatch repair (dMMR) status was determined by either loss of mismatch repair protein expression on IHC or microsatellite instability (MSI) by PCR in 127 APC biopsies from 124 patients (Royal Marsden [RMH] cohort); MSI by targeted panel next-generation sequencing (MSINGS) was then evaluated in the same cohort and in 254 APC samples from the Stand Up To Cancer/Prostate Cancer Foundation (SU2C/PCF). Whole exome sequencing (WES) data from this latter cohort were analyzed for pathogenic MMR gene variants, mutational load, and mutational signatures. Transcriptomic data, available for 168 samples, was also performed. RESULTS: Overall, 8.1% of patients in the RMH cohort had some evidence of dMMR, which associated with decreased overall survival. Higher MSINGS scores associated with dMMR, and these APCs were enriched for higher T cell infiltration and PD-L1 protein expression. Exome MSINGS scores strongly correlated with targeted panel MSINGS scores (r = 0.73, P < 0.0001), and higher MSINGS scores associated with dMMR mutational signatures in APC exomes. dMMR mutational signatures also associated with MMR gene mutations and increased immune cell, immune checkpoint, and T cell-associated transcripts. APC with dMMR mutational signatures overexpressed a variety of immune transcripts, including CD200R1, BTLA, PD-L1, PD-L2, ADORA2A, PIK3CG, and TIGIT. CONCLUSION: These data could impact immune target selection, combination therapeutic strategy selection, and selection of predictive biomarkers for immunotherapy in APC. FUNDING: We acknowledge funding support from Movember, Prostate Cancer UK, The Prostate Cancer Foundation, SU2C, and Cancer Research UK.
Assuntos
Antígeno B7-H1 , Reparo de Erro de Pareamento de DNA , Imunoterapia , Instabilidade de Microssatélites , Mutação , Proteínas de Neoplasias , Neoplasias da Próstata , Adulto , Idoso , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapiaRESUMO
Purpose: Circulating tumor cells (CTCs) have clinical relevance, but their study has been limited by their low frequency.Experimental Design: We evaluated liquid biopsies by apheresis to increase CTC yield from patients suffering from metastatic prostate cancer, allow precise gene copy-number calls, and study disease heterogeneity.Results: Apheresis was well tolerated and allowed the separation of large numbers of CTCs; the average CTC yield from 7.5 mL of peripheral blood was 167 CTCs, whereas the average CTC yield per apheresis (mean volume: 59.5 mL) was 12,546 CTCs. Purified single CTCs could be isolated from apheresis product by FACS sorting; copy-number aberration (CNA) profiles of 185 single CTCs from 14 patients revealed the genomic landscape of lethal prostate cancer and identified complex intrapatient, intercell, genomic heterogeneity missed on bulk biopsy analyses.Conclusions: Apheresis facilitated the capture of large numbers of CTCs noninvasively with minimal morbidity and allowed the deconvolution of intrapatient heterogeneity and clonal evolution. Clin Cancer Res; 24(22); 5635-44. ©2018 AACR.
Assuntos
Biomarcadores Tumorais , Remoção de Componentes Sanguíneos , Biópsia Líquida , Neoplasias da Próstata/diagnóstico , Análise de Célula Única , Remoção de Componentes Sanguíneos/métodos , Contagem de Células , Separação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Hibridização Genômica Comparativa , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Biópsia Líquida/métodos , Masculino , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/genética , Análise de Célula Única/métodosRESUMO
Purpose: CHD1 deletions and SPOP mutations frequently cooccur in prostate cancer with lower frequencies reported in castration-resistant prostate cancer (CRPC). We monitored CHD1 expression during disease progression and assessed the molecular and clinical characteristics of CHD1-deleted/SPOP-mutated metastatic CRPC (mCRPC).Experimental Design: We identified 89 patients with mCRPC who had hormone-naive and castration-resistant tumor samples available: These were analyzed for CHD1, PTEN, and ERG expression by IHC. SPOP status was determined by targeted next-generation sequencing (NGS). We studied the correlations between these biomarkers and (i) overall survival from diagnosis; (ii) overall survival from CRPC; (iii) duration of abiraterone treatment; and (iv) response to abiraterone. Relationship with outcome was analyzed using Cox regression and log-rank analyses.Results: CHD1 protein loss was detected in 11 (15%) and 13 (17%) of hormone-sensitive prostate cancer (HSPC) and CRPC biopsies, respectively. Comparison of CHD1 expression was feasible in 56 matched, same patient HSPC and CRPC biopsies. CHD1 protein status in HSPC and CRPC correlated in 55 of 56 cases (98%). We identified 22 patients with somatic SPOP mutations, with six of these mutations not reported previously in prostate cancer. SPOP mutations and/or CHD1 loss was associated with a higher response rate to abiraterone (SPOP: OR, 14.50 P = 0.001; CHD1: OR, 7.30, P = 0.08) and a longer time on abiraterone (SPOP: HR, 0.37, P = 0.002, CHD1: HR, 0.50, P = 0.06).Conclusions: SPOP-mutated mCRPCs are strongly enriched for CHD1 loss. These tumors appear highly sensitive to abiraterone treatment. Clin Cancer Res; 24(22); 5585-93. ©2018 AACR.
Assuntos
Androstenos/farmacologia , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Deleção de Genes , Mutação , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Mutações Sintéticas Letais , Idoso , Linhagem Celular Tumoral , Progressão da Doença , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genéticaRESUMO
BACKGROUND: Loss of PTEN is a common genomic aberration in castration-resistant prostate cancer (CRPC) and is frequently concurrent with ERG rearrangements, causing resistance to next-generation hormonal treatment (NGHT) including abiraterone. The relationship between PTEN loss and docetaxel sensitivity remains uncertain. OBJECTIVE: To study the antitumor activity of docetaxel in metastatic CRPC in relation to PTEN and ERG aberrations. DESIGN SETTING AND PARTICIPANTS: Single-centre, retrospective analysis of PTEN loss and ERG expression using a previously described immunohistochemistry (IHC) binary classification system. Patients received docetaxel between January 1, 2006 and July 31, 2016. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Response correlations were analyzed using Pearson's χ2 tests and independent-sample t tests. Overall (OS) and progression-free survival (PFS) were analyzed using univariate and multivariate (MVA) Cox regression and Kaplan-Meier methods. RESULTS AND LIMITATIONS: Overall, 215 patients were eligible. Established metastatic CRPC prognostic factors were well balanced between PTEN loss (39%) and normal patients (61%). PTEN loss was associated with shorter median OS (25.4 vs 34.7 mo; hazard ratio [HR] 1.66, 95% confidence interval [CI] 1.18-2.13; p = 0.001). There were no differences in median PFS (8.0 vs 9.1 mo; univariate HR 1.20, 95% CI 0.86-1.68; p = 0.28) and PSA response (53.4% vs 50.6%; p = 0.74). PTEN loss was an independent prognostics factor in MVA. ERG status was available for 100 patients. ERG positivity was not associated with OS or PFS. Limitations include the retrospective nature and the single-centre analysis. CONCLUSIONS: Our findings suggest that metastatic CRPC with PTEN loss might benefit more from docetaxel than from NGHT. PATIENT SUMMARY: In this study we found that metastatic prostate cancer with loss of the PTEN switch may benefit more from docetaxel than from abiraterone.
RESUMO
Taxanes are chemotherapeutic drugs employed in the clinic to treat a variety of malignancies. Despite their overall efficacy, cancer cells often display resistance to taxanes. Therefore, new strategies to increase the effectiveness of taxane-based chemotherapeutics are urgently needed. Multiple molecular players are linked to taxane resistance; these include efflux pumps, DNA repair mechanisms, and hypoxia-related pathways. In addition, emerging evidence indicates that both non-coding RNAs and epigenetic effectors might also be implicated in taxane resistance. Here we focus on the causes of taxane resistance, with the aim to envisage an integrated model of the 'taxane resistance phenome'. This model could help the development of novel therapeutic strategies to treat taxane-resistant neoplasms.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hipóxia Celular/fisiologia , RNA não Traduzido/metabolismo , Taxoides/farmacologia , Antineoplásicos/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Taxoides/uso terapêuticoRESUMO
Patients with prostate cancer frequently show resistance to androgen-deprivation therapy, a condition known as castration-resistant prostate cancer (CRPC). Acquiring a better understanding of the mechanisms that control the development of CRPC remains an unmet clinical need. The well-established dependency of cancer cells on the tumour microenvironment indicates that the microenvironment might control the emergence of CRPC. Here we identify IL-23 produced by myeloid-derived suppressor cells (MDSCs) as a driver of CRPC in mice and patients with CRPC. Mechanistically, IL-23 secreted by MDSCs can activate the androgen receptor pathway in prostate tumour cells, promoting cell survival and proliferation in androgen-deprived conditions. Intra-tumour MDSC infiltration and IL-23 concentration are increased in blood and tumour samples from patients with CRPC. Antibody-mediated inactivation of IL-23 restored sensitivity to androgen-deprivation therapy in mice. Taken together, these results reveal that MDSCs promote CRPC by acting in a non-cell autonomous manner. Treatments that block IL-23 can oppose MDSC-mediated resistance to castration in prostate cancer and synergize with standard therapies.
Assuntos
Interleucina-23/antagonistas & inibidores , Interleucina-23/metabolismo , Células Supressoras Mieloides/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Androgênios/deficiência , Animais , Benzamidas , Proliferação de Células , Sobrevivência Celular , Humanos , Interleucina-23/sangue , Interleucina-23/imunologia , Masculino , Camundongos , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/imunologia , Nitrilas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Interleucina/metabolismo , Transdução de SinaisRESUMO
Purpose: Persistent androgen receptor (AR) signaling drives castration-resistant prostate cancer (CRPC) and confers resistance to AR-targeting therapies. Novel therapeutic strategies to overcome this are urgently required. We evaluated how bromodomain and extra-terminal (BET) protein inhibitors (BETi) abrogate aberrant AR signaling in CRPC.Experimental Design: We determined associations between BET expression, AR-driven transcription, and patient outcome; and the effect and mechanism by which chemical BETi (JQ1 and GSK1210151A; I-BET151) and BET family protein knockdown regulates AR-V7 expression and AR signaling in prostate cancer models.Results: Nuclear BRD4 protein expression increases significantly (P ≤ 0.01) with castration resistance in same patient treatment-naïve (median H-score; interquartile range: 100; 100-170) and CRPC (150; 110-200) biopsies, with higher expression at diagnosis associating with worse outcome (HR, 3.25; 95% CI, 1.50-7.01; P ≤ 0.001). BRD2, BRD3, and BRD4 RNA expression in CRPC biopsies correlates with AR-driven transcription (all P ≤ 0.001). Chemical BETi, and combined BET family protein knockdown, reduce AR-V7 expression and AR signaling. This was not recapitulated by C-MYC knockdown. In addition, we show that BETi regulates RNA processing thereby reducing alternative splicing and AR-V7 expression. Furthermore, BETi reduce growth of prostate cancer cells and patient-derived organoids with known AR mutations, AR amplification and AR-V7 expression. Finally, BETi, unlike enzalutamide, decreases persistent AR signaling and growth (P ≤ 0.001) of a patient-derived xenograft model of CRPC with AR amplification and AR-V7 expression.Conclusions: BETi merit clinical evaluation as inhibitors of AR splicing and function, with trials demonstrating their blockade in proof-of-mechanism pharmacodynamic studies. Clin Cancer Res; 24(13); 3149-62. ©2018 AACR.
Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Processamento Alternativo , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Prognóstico , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas , RNA Interferente Pequeno/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Resultado do TratamentoRESUMO
BACKGROUND: Noninvasive biomarkers are needed to guide metastatic castration-resistant prostate cancer (mCRPC) treatment. OBJECTIVE: To clinically qualify baseline and on-treatment cell-free DNA (cfDNA) concentrations as biomarkers of patient outcome following taxane chemotherapy. DESIGN, SETTING, AND PARTICIPANTS: Blood for cfDNA analyses was prospectively collected from 571 mCRPC patients participating in two phase III clinical trials, FIRSTANA (NCT01308567) and PROSELICA (NCT01308580). Patients received docetaxel (75mg/m2) or cabazitaxel (20 or 25mg/m2) as first-line chemotherapy (FIRSTANA), and cabazitaxel (20 or 25mg/m2) as second-line chemotherapy (PROSELICA). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Associations between cfDNA concentration and prostate-specific antigen (PSA) response were tested using logistic regression models. Survival was estimated using Kaplan-Meier methods for cfDNA concentration grouped by quartile. Cox proportional hazard models, within each study, tested for associations with radiological progression-free survival (rPFS) and overall survival (OS), with multivariable analyses adjusting for baseline prognostic variables. Two-stage individual patient meta-analysis combined results for cfDNA concentrations for both studies. RESULTS AND LIMITATIONS: In 2502 samples, baseline log10 cfDNA concentration correlated with known prognostic factors, shorter rPFS (hazard ratio [HR]=1.54; 95% confidence interval [CI]: 1.15-2.08; p=0.004), and shorter OS on taxane therapy (HR=1.53; 95% CI: 1.18-1.97; p=0.001). In multivariable analyses, baseline cfDNA concentration was an independent prognostic variable for rPFS and OS in both first- and second-line chemotherapy settings. Patients with a PSA response experienced a decline in log10 cfDNA concentrations during the first four cycles of treatment (per cycle -0.03; 95% CI: -0.044 to -0.009; p=0.003). Study limitations included the fact that blood sample collection was not mandated for all patients and the inability to specifically quantitate tumour-derived cfDNA fraction in cfDNA. CONCLUSIONS: We report that changes in cfDNA concentrations correlate with both rPFS and OS in patients receiving first- and second-line taxane therapy, and may serve as independent prognostic biomarkers of response to taxanes. PATIENT SUMMARY: In the past decade, several new therapies have been introduced for men diagnosed with metastatic prostate cancer. Although metastatic prostate cancer remains incurable, these novel agents have extended patient survival and improved their quality of life in comparison with the last decade. To further optimise treatment allocation and individualise patient care, better tests (biomarkers) are needed to guide the delivery of improved and more precise care. In this report, we assessed cfDNA in over 2500 blood samples from men with prostate cancer who were recruited to two separate international studies and received taxane chemotherapy. We quantified the concentration of cfDNA fragments in blood plasma, which partly originates from tumour. We identified that higher concentrations of circulating cfDNA fragments, prior to starting taxane chemotherapy, can be used to identify patients with aggressive prostate cancer. A decline in cfDNA concentration during the first 3-9 wk after initiation of taxane therapy was seen in patients deriving benefit from taxane chemotherapy. These results identified circulating cfDNA as a new biomarker of aggressive disease in metastatic prostate cancer and imply that the study of cfDNA has clinical utility, supporting further efforts to develop blood-based tests on this circulating tumour-derived DNA.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Docetaxel/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Taxoides/administração & dosagem , Idoso , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Esquema de Medicação , Humanos , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Intervalo Livre de Progressão , Estudos Prospectivos , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Tempo , Resultado do TratamentoRESUMO
Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Neoplasias Pulmonares/genética , Masculino , Células Neoplásicas Circulantes/patologia , Reação em Cadeia da Polimerase/instrumentação , Neoplasias da Próstata/genética , Análise de Célula Única/instrumentação , Sequenciamento Completo do Genoma/instrumentação , Fluxo de TrabalhoRESUMO
BRD4 belongs to the bromodomain and extraterminal (BET) family of chromatin reader proteins that bind acetylated histones and regulate gene expression. Pharmacological inhibition of BRD4 by BET inhibitors (BETi) has indicated antitumor activity against multiple cancer types. We show that BRD4 is essential for the repair of DNA double-strand breaks (DSBs) and mediates the formation of oncogenic gene rearrangements by engaging the non-homologous end joining (NHEJ) pathway. Mechanistically, genome-wide DNA breaks are associated with enhanced acetylation of histone H4, leading to BRD4 recruitment, and stable establishment of the DNA repair complex. In support of this, we also show that, in clinical tumor samples, BRD4 protein levels are negatively associated with outcome after prostate cancer (PCa) radiation therapy. Thus, in addition to regulating gene expression, BRD4 is also a central player in the repair of DNA DSBs, with significant implications for cancer therapy.