Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Retrovirology ; 21(1): 10, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778414

RESUMO

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Assuntos
HIV-1 , Imunidade Inata , Nucleotidiltransferases , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/imunologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fatores de Restrição Antivirais , Macrófagos/imunologia , Macrófagos/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células THP-1 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/imunologia , Evasão da Resposta Imune , Capsídeo/metabolismo , Capsídeo/imunologia , Replicação Viral , Vírion/metabolismo , Vírion/genética , Vírion/imunologia , Interações Hospedeiro-Patógeno/imunologia , DNA Viral/genética , Linhagem Celular
2.
J Immunol Res ; 2022: 8873536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928633

RESUMO

Type 1 interferons (IFN-1) are pleiotropic cytokines with well-established anticancer and antiviral properties, particularly in mucosal tissues. Hence, natural IFN-1-inducing treatments are highly sought after in the clinic. Here, we report for the first time that cryptolepine, a pharmacoactive alkaloid in the medicinal plant Cryptolepis sanguinolenta, is a potent IFN-1 pathway inducer. Cryptolepine increased the transcript levels of JAK1, TYK2, STAT1, STAT2, IRF9, and OAS3, as well as increased the accumulation of STAT1 and OAS3 proteins, similar to recombinant human IFN-α. Cryptolepine effects were observed in multiple cell types including a model of human macrophages. This response was maintained in MAVS and STING-deficient cell lines, suggesting that cryptolepine effects are not mediated by nucleic acids released upon nuclear or organelle damage. In agreement, cryptolepine did not affect cell viability in concentrations that triggered potent IFN-1 activation. In addition, we observed no differences in the presence of a pharmacological inhibitor of TBK1, a pleiotropic kinase that is a converging point for Toll-like receptors (TLRs) and nucleic acid sensors. Together, our results demonstrate that cryptolepine is a strong inducer of IFN-1 response and suggest that cryptolepine-based medications such as C. sanguinolenta extract could be potentially tested in resource-limited regions of the world for the management of chronic viral infections as well as cancers.


Assuntos
Alcaloides , Antineoplásicos , Interferon Tipo I , Quinolinas , Alcaloides/farmacologia , Humanos , Alcaloides Indólicos/farmacologia , Quinolinas/farmacologia
3.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300875

RESUMO

HIV-1 must replicate in cells that are equipped to defend themselves from infection through intracellular innate immune systems. HIV-1 evades innate immune sensing through encapsidated DNA synthesis and encodes accessory genes that antagonize specific antiviral effectors. Here, we show that both particle associated, and expressed HIV-1 Vpr, antagonize the stimulatory effect of a variety of pathogen associated molecular patterns by inhibiting IRF3 and NF-κB nuclear transport. Phosphorylation of IRF3 at S396, but not S386, was also inhibited. We propose that, rather than promoting HIV-1 nuclear import, Vpr interacts with karyopherins to disturb their import of IRF3 and NF-κB to promote replication in macrophages. Concordantly, we demonstrate Vpr-dependent rescue of HIV-1 replication in human macrophages from inhibition by cGAMP, the product of activated cGAS. We propose a model that unifies Vpr manipulation of nuclear import and inhibition of innate immune activation to promote HIV-1 replication and transmission.


Assuntos
Infecções por HIV/imunologia , Evasão da Resposta Imune/fisiologia , Imunidade Inata/imunologia , Replicação Viral/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/imunologia , Transporte Ativo do Núcleo Celular/fisiologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Carioferinas/imunologia , Carioferinas/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
4.
EMBO J ; 39(20): e103958, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32852081

RESUMO

Detection of viral DNA by cyclic GMP-AMP synthase (cGAS) is a first line of defence leading to the production of type I interferon (IFN). As HIV-1 replication is not a strong inducer of IFN, we hypothesised that an intact capsid physically cloaks viral DNA from cGAS. To test this, we generated defective viral particles by treatment with HIV-1 protease inhibitors or by genetic manipulation of gag. These viruses had defective Gag cleavage, reduced infectivity and diminished capacity to saturate TRIM5α. Importantly, unlike wild-type HIV-1, infection with cleavage defective HIV-1 triggered an IFN response in THP-1 cells that was dependent on viral DNA and cGAS. An IFN response was also observed in primary human macrophages infected with cleavage defective viruses. Infection in the presence of the capsid destabilising small molecule PF-74 also induced a cGAS-dependent IFN response. These data demonstrate a protective role for capsid and suggest that antiviral activity of capsid- and protease-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Assuntos
DNA Viral/imunologia , Infecções por HIV/imunologia , Inibidores da Protease de HIV/farmacologia , HIV-1/imunologia , Macrófagos/metabolismo , Nucleotidiltransferases/metabolismo , Replicação Viral/genética , Imunidade Adaptativa , Fatores de Restrição Antivirais , Sistemas CRISPR-Cas , Capsídeo/metabolismo , Linhagem Celular , DNA Viral/genética , Edição de Genes , Produtos do Gene gag/genética , Infecções por HIV/enzimologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Indóis/farmacologia , Interferons/metabolismo , Interferons/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Transdução de Sinais/imunologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Mol Ther Methods Clin Dev ; 17: 209-219, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31970199

RESUMO

Most gene therapy lentiviral vector (LV) production platforms employ HEK293T cells expressing the oncogenic SV40 large T-antigen (TAg) that is thought to promote plasmid-mediated gene expression. Studies on other viral oncogenes suggest that TAg may also inhibit the intracellular autonomous innate immune system that triggers defensive antiviral responses upon detection of viral components by cytosolic sensors. Here we show that an innate response can be generated after HIV-1-derived LV transfection in HEK293T cells, particularly by the transgene, yet, remarkably, this had no effect on LV titer. Further, overexpression of DNA sensing pathway components led to expression of inflammatory cytokine and interferon (IFN) stimulated genes but did not result in detectable IFN or CXCL10 and had no impact on LV titer. Exogenous IFN-ß also did not affect LV production or transduction efficiency in primary T cells. Additionally, manipulation of TAg did not affect innate antiviral responses, but stable expression of TAg boosted vector production in HEK293 cells. Our findings demonstrate a measure of innate immune competence in HEK293T cells but, crucially, show that activation of inflammatory signaling is uncoupled from cytokine secretion in these cells. This provides new mechanistic insight into the unique suitability of HEK293T cells for LV manufacture.

6.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491158

RESUMO

Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerizes and translocates from the endoplasmic reticulum (ER) to a perinuclear region to mediate IRF-3 activation. Poxviruses are double-stranded DNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here, we investigated the activation of innate immune signaling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerized and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerization and phosphorylation during infection and in response to transfected DNA and cyclic GMP-AMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence.IMPORTANCE Poxviruses are double-stranded DNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as efficient oncolytics in virotherapy. The successful therapeutic use of VACV depends on a detailed understanding of its ability to modulate host innate immune responses. DNA sensing is a critical cellular mechanism for pathogen detection and activation of innate immunity that is centrally coordinated by the endoplasmic reticulum-resident protein STING. Here, STING is shown to mediate immune activation in response to MVA, but not in response to virulent VACV strains or other virulent poxviruses, which prevent STING activation and DNA sensing during infection and after DNA transfection. These results provide new insights into poxvirus immune evasion and have implications in the rational design of VACV-based therapeutics.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Infecções por Poxviridae/metabolismo , Poxviridae/fisiologia , Linhagem Celular , Citosol/metabolismo , Citosol/virologia , Células HEK293 , Humanos , Fosforilação , Poxviridae/patogenicidade , Infecções por Poxviridae/virologia , Multimerização Proteica , Células THP-1 , Virulência , Replicação Viral
7.
J Gen Virol ; 95(Pt 12): 2757-2768, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25090990

RESUMO

Vaccinia virus (VACV) is a large dsDNA virus encoding ~200 proteins, several of which inhibit apoptosis. Here, a comparative study of anti-apoptotic proteins N1, F1, B13 and Golgi anti-apoptotic protein (GAAP) in isolation and during viral infection is presented. VACVs strains engineered to lack each gene separately still blocked apoptosis to some degree because of functional redundancy provided by the other anti-apoptotic proteins. To overcome this redundancy, we inserted each gene separately into a VACV strain (vv811) that lacked all these anti-apoptotic proteins and that induced apoptosis efficiently during infection. Each protein was also expressed in cells using lentivirus vectors. In isolation, each VACV protein showed anti-apoptotic activity in response to specific stimuli, as measured by immunoblotting for cleaved poly(ADP ribose) polymerase-1 and caspase-3 activation. Of the proteins tested, B13 was the most potent inhibitor, blocking both intrinsic and extrinsic stimuli, whilst the activity of the other proteins was largely restricted to inhibition of intrinsic stimuli. In addition, B13 and F1 were effective blockers of apoptosis induced by vv811 infection. Finally, whilst differences in induction of apoptosis were barely detectable during infection with VACV strain Western Reserve compared with derivative viruses lacking individual anti-apoptotic genes, several of these proteins reduced activation of caspase-3 during infection by vv811 strains expressing these proteins. These results illustrated that vv811 was a useful tool to determine the role of VACV proteins during infection and that whilst all of these proteins have some anti-apoptotic activity, B13 was the most potent.


Assuntos
Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Humanos , Osteossarcoma , Proteínas Virais/genética
8.
J Gen Virol ; 95(Pt 9): 2038-2049, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24914067

RESUMO

Ubiquitylation is a covalent post-translational modification that regulates protein stability and is involved in many biological functions. Proteins may be modified with mono-ubiquitin or ubiquitin chains. Viruses have evolved multiple mechanisms to perturb the cell ubiquitin system and manipulate it to their own benefit. Here, we report ubiquitylation of vaccinia virus (VACV) protein N1. N1 is an inhibitor of the nuclear factor NF-κB and apoptosis that contributes to virulence, has a Bcl-2-like fold, and is highly conserved amongst orthopoxviruses. The interaction between N1 and ubiquitin occurs at endogenous protein levels during VACV infection and following ectopic expression of N1. Biochemical analysis demonstrated that N1 is covalently ubiquitylated, and heterodimers of ubiquitylated and non-ubiquitylated N1 monomers were identified, suggesting that ubiquitylation does not inhibit N1 dimerization. Studies with other VACV Bcl-2 proteins, such as C6 or B14, revealed that although these proteins also interact with ubiquitin, these interactions are non-covalent. Finally, mutagenesis of N1 showed that ubiquitylation occurs in a conventional lysine-dependent manner at multiple acceptor sites because only an N1 allele devoid of lysine residues remained unmodified. Taken together, we described a previously uncharacterized modification of the VACV protein N1 that provided a new layer of complexity to the biology of this virulence factor, and provided another example of the intricate interplay between poxviruses and the host ubiquitin system.


Assuntos
Ubiquitinação/genética , Vaccinia virus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Apoptose , Linhagem Celular , Chlorocebus aethiops , Dimerização , Células HEK293 , Humanos , Lisina/química , Macrófagos/virologia , Camundongos , Mutação , NF-kappa B/antagonistas & inibidores , Ubiquitinação/fisiologia , Vacínia , Fatores de Virulência/genética
9.
J Virol ; 88(6): 3092-102, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371075

RESUMO

The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-κB activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-κB activation downstream of tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-κB inhibitor A49 (vv811ΔA49), yielding a virus that lacked all currently described inhibitors downstream of TNF-α and IL-1ß. Unlike vv811, vv811ΔA49 no longer inhibited degradation of the phosphorylated inhibitor of κBα and p65 translocated into the nucleus. However, despite this translocation, vv811ΔA49 still inhibited TNF-α- and IL-1ß-induced NF-κB-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-κB that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus.


Assuntos
NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Vaccinia virus/fisiologia , Vacínia/genética , Vacínia/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , NF-kappa B/genética , Transporte Proteico , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vacínia/virologia , Vaccinia virus/genética
10.
J Gen Virol ; 94(Pt 9): 2070-2081, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23761407

RESUMO

Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the N2L gene (vΔN2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the vΔN2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, vΔN2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus.


Assuntos
Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon/antagonistas & inibidores , Vaccinia virus/patogenicidade , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Camundongos , Camundongos Endogâmicos BALB C , Vacínia/patologia , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/fisiologia , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA