Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Adv Sci (Weinh) ; : e2400023, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828688

RESUMO

The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.

2.
J Med Chem ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912753

RESUMO

Bifunctional conjugates targeting PD-L1/PARP7 were designed, synthesized, and evaluated for the first time. Compounds B3 and C6 showed potent activity against PD-1/PD-L1 interaction (IC50 = 0.426 and 0.342 µM, respectively) and PARP7 (IC50 = 2.50 and 7.05 nM, respectively). They also displayed excellent binding affinity with hPD-L1, approximately 100-200-fold better than that of hPD-1. Both compounds restored T-cell function, leading to the increase of IFN-γ secretion. In the coculture assay, B3 and C6 enhanced the killing activity of MDA-MB-231 cells by Jurkat T cells in a concentration-dependent manner. Furthermore, B3 and C6 displayed significant in vivo antitumor efficacy in a melanoma B16-F10 tumor mouse model, more than 5.3-fold better than BMS-1 (a PD-L1 inhibitor) and RBN-2397 (a PARP7i clinical candidate) at the dose of 25 mg/kg, without observable side effects. These results provide valuable insight and understanding for developing bifunctional conjugates for potential anticancer therapy.

4.
Light Sci Appl ; 13(1): 113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744817

RESUMO

Using photodynamic therapy (PDT) to treat deep-seated cancers is limited due to inefficient delivery of photosensitizers and low tissue penetration of light. Polymeric nanocarriers are widely used for photosensitizer delivery, while the self-quenching of the encapsulated photosensitizers would impair the PDT efficacy. Furthermore, the generated short-lived reactive oxygen spieces (ROS) can hardly diffuse out of nanocarriers, resulting in low PDT efficacy. Therefore, a smart nanocarrier system which can be degraded by light, followed by photosensitizer activation can potentially overcome these limitations and enhance the PDT efficacy. A light-sensitive polymer nanocarrier encapsulating photosensitizer (RB-M) was synthesized. An implantable wireless dual wavelength microLED device which delivers the two light wavelengths sequentially was developed to programmatically control the release and activation of the loaded photosensitizer. Two transmitter coils with matching resonant frequencies allow activation of the connected LEDs to emit different wavelengths independently. Optimal irradiation time, dose, and RB-M concentration were determined using an agent-based digital simulation method. In vitro and in vivo validation experiments in an orthotopic rat liver hepatocellular carcinoma disease model confirmed that the nanocarrier rupture and sequential low dose light irradiation strategy resulted in successful PDT at reduced photosensitizer and irradiation dose, which is a clinically significant event that enhances treatment safety.

5.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745192

RESUMO

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Proteína 28 com Motivo Tripartido , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Linhagem Celular Tumoral , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Adenosina/análogos & derivados , Adenosina/metabolismo
6.
Mol Cancer ; 23(1): 60, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520019

RESUMO

BACKGROUND: Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs). METHODS: LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models. RESULTS: LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers. CONCLUSIONS: Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Mama/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Paclitaxel/farmacologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Quinases Polo-Like , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
J Cosmet Dermatol ; 23(6): 2256-2269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497297

RESUMO

BACKGROUND: Research has demonstrated the anti-photoaging properties of glabridin and bakuchiol. METHODS: The impact of glabridin, glabridin + bakuchiol, and bakuchiol on the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) in mice skin fibroblasts was observed. Furthermore, we investigated the potential roles of fibronectin (FN), interferon-γ (IFN-γ), interleukin-22 (IL-22), and transforming growth factor-ß (TGF-ß) in the tissues, and evaluated their impact on the enzymatic levels in the skin. In conjunction with transcriptomic analysis, metabolomic profiling, and network pharmacology, all samples underwent comprehensive metabolomic and principal component analysis. The Venny2.1 method was utilized to identify variances in shared metabolites between the treatment group and the UVB group, as well as between the UVB group and the control group. Subsequently, a cluster heat map was generated to forecast and analyze metabolic pathways and targets. RESULTS: The outcomes from the hematoxylin and eosin and toluidine blue staining revealed that glabridin and bakuchiol markedly decreased dermal thickness and suppressed mast cell infiltration in photoaged mice. Immunohistochemistry and Elisa analysis revealed that glabridin and bakuchiol effectively attenuated the levels of pro-inflammatory factors, including IL-1ß, tumor necrosis factor-α, IL-22, and IFN-γ. Furthermore, an increase in the levels of anti-inflammatory factors such as FN and TGF-ß was also observed. The determination of the contents of superoxide dismutase, hydroxypropyltransferase and malondialdehyde in mice dorsal skin revealed that glabridin and bakuchiol not only elevated the levels of superoxide dismutase and hydroxyproline, but also reduced malondialdehyde content. Due to the limited number of shared differential metabolites exclusively within Kyoto Encyclopedia of Genes and Genomes, comprehensive pathway enrichment analysis was not feasible. CONCLUSION: This study demonstrates that glabridin and bakuchiol effectively impede photoaging and alleviate skin inflammation in mice.


Assuntos
Isoflavonas , Fenóis , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Fenóis/farmacologia , Camundongos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Isoflavonas/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucinas/metabolismo , Fibronectinas/metabolismo , Interleucina 22 , Feminino , Interferon gama/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
J Med Chem ; 67(6): 4950-4976, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456618

RESUMO

Histone deacetylases (HDACs) inhibitors such as vorinostat (SAHA) has been used to treat hematologic malignancies (rather than solid tumors) and have been found to suppress the JAK/STAT, a critical signal pathway for antitumor immunity, while PARP7 inhibitor RBN-2397 could activate the type I interferons (IFN-I) pathway, facilitating downstream effects such as STAT1 phosphorylation and immune activation. To elucidate whether simultaneous inhibition of these two targets could interfere with these two signal pathways, a series of pyridazinone-based PARP7/HDACs dual inhibitors have been designed, synthesized, and evaluated in vitro and in vivo experiments. Compound 9l was identified as a potent and balanced dual inhibitor for the first time, exhibiting excellent antitumor capabilities both in vitro and in vivo. This suggests that 9l can be used as a valuable tool molecule for investigating the relationship between anticancer immunity and HDAC inhibition.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Vorinostat/farmacologia , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proliferação de Células
9.
Cell Death Dis ; 15(2): 173, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409090

RESUMO

Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Mutação/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
10.
World Neurosurg ; 181: e1130-e1137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995993

RESUMO

OBJECTIVE: This study presents the clinical characteristics, imaging manifestations, and surgical experience in 38 patients diagnosed with craniofacial fibrous dysplasia in fronto-orbital region (foFD). METHODS: We retrospectively analyzed the clinical data from 38 patients who had surgery for foFD. The surgical procedure typically involved extensive tumor removal, followed by immediate reconstruction of the frontal bone and orbit using synthetic materials. Additionally, 9 patients underwent simultaneous microscopic decompression of the optic canal. RESULTS: Common clinical manifestations included progressive fronto-orbital bone deformity (35), proptosis (28), orbital dystopia (21), and visual impairment (9). The disease primarily affecting the frontal bone (38), the sphenoid bone (28), and the ethmoid bone (24). The optic canal was involved in 9 patients with functional impairment. Computed tomography scans in all 38 cases revealed satisfactory repair material positioning and complete resolution of frontal deformities. Among the 9 patients who underwent optic canal decompression, 7 experienced partial recovery of visual acuity after surgery. CONCLUSIONS: In the surgical treatment of foFD, it is crucial to achieve maximal bone resection and repair skull defects, while decompressing the optic canal can provide significant benefits for patients with decreased visual function preoperatively. The use of preformed artificial materials offers advantages in aesthetic restoration after lesion excision.


Assuntos
Displasia Fibrosa Craniofacial , Displasia Fibrosa Óssea , Doenças Orbitárias , Humanos , Estudos Retrospectivos , Displasia Fibrosa Óssea/diagnóstico por imagem , Displasia Fibrosa Óssea/cirurgia , Órbita/diagnóstico por imagem , Órbita/cirurgia , Doenças Orbitárias/cirurgia , Tomografia Computadorizada por Raios X
11.
Eur J Pharmacol ; 963: 176277, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123007

RESUMO

Myocardial infarction (MI), an acute cardiovascular disease characterized by coronary artery blockage, inadequate blood supply, and subsequent ischemic necrosis of the myocardium, is one of the leading causes of death. The cellular, physiological, and pathological responses following MI are complex, involving multiple intertwined pathological mechanisms. Hypoxia-inducible factor-1 (HIF-1), a crucial regulator of hypoxia, plays a significant role in of the development of MI by modulating the behavior of various cells such as cardiomyocytes, endothelial cells, macrophages, and fibroblasts under hypoxic conditions. HIF-1 regulates various post-MI adaptive reactions to acute ischemia and hypoxia through various mechanisms. These mechanisms include angiogenesis, energy metabolism, oxidative stress, inflammatory response, and ventricular remodeling. With its crucial role in MI, HIF-1 is expected to significantly influence the treatment of MI. However, the drugs available for the treatment of MI targeting HIF-1 are currently limited, and most contain natural compounds. The development of precision-targeted drugs modulating HIF-1 has therapeutic potential for advancing MI treatment research and development. This study aimed to summarize the regulatory role of HIF-1 in the pathological responses of various cells following MI, the diverse mechanisms of action of HIF-1 in MI, and the potential drugs targeting HIF-1 for treating MI, thus providing the theoretical foundations for potential clinical therapeutic targets.


Assuntos
Fator 1 Induzível por Hipóxia , Infarto do Miocárdio , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Células Endoteliais/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
12.
Shock ; 60(5): 698-706, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695737

RESUMO

ABSTRACT: Purpose: Intensive care unit-acquired weakness (ICUAW) is a severe neuromuscular complication that frequently occurs in patients with sepsis. The precise molecular pathophysiology of mitochondrial calcium uptake 1 (MICU1) and mitochondrial calcium uniporter (MCU) in ICUAW has not been fully elucidated. Here, we speculate that ICUAW is associated with MICU1:MCU protein ratio-mediated mitochondrial calcium ([Ca 2+ ] m ) uptake dysfunction. Methods: Cecal ligation and perforation (CLP) was performed on C57BL/6J mice to induce sepsis. Sham-operated animals were used as controls. Lipopolysaccharide (LPS) (5 µg/mL) was used to induce inflammation in differentiated C2C12 myoblasts. Compound muscle action potential (CMAP) was detected using a biological signal acquisition system. Grip strength was measured using a grip-strength meter. Skeletal muscle inflammatory factors were detected using ELISA kits. The cross-sectional area (CSA) of the tibialis anterior (TA) muscle was detected by hematoxylin and eosin staining. Cytosolic calcium ([Ca 2+ ] c ) levels were measured using Fluo-4 AM. Adeno-associated virus (AAV) was injected into TA muscles for 4 weeks to overexpress MICU1 prophylactically. A lentivirus was used to infect C2C12 cells to increase MICU1 expression prophylactically. Findings: The results suggest that sepsis induces [Ca 2+ ] m uptake disorder by reducing the MICU1:MCU protein ratio, resulting in skeletal muscle weakness and muscle fiber atrophy. However, MICU1 prophylactic overexpression reversed these effects by increasing the MICU1:MCU protein ratio. Conclusions: ICUAW is associated with impaired [Ca 2+ ] m uptake caused by a decreased MICU1:MCU protein ratio. MICU1 overexpression improves sepsis-induced skeletal muscle weakness and atrophy by ameliorating the [Ca 2+ ] m uptake disorder.


Assuntos
Proteínas de Transporte de Cátions , Sepse , Animais , Camundongos , Atrofia/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Debilidade Muscular/etiologia , Músculo Esquelético/metabolismo , Sepse/metabolismo
13.
Acta Biomater ; 171: 553-564, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739246

RESUMO

Photodynamic therapy (PDT) is an effective non-invasive or minimally invasive treatment method against different tumors. Loading photosensitizers in nanocarriers can potentially increase their accumulation in tumor sites. However, the PDT efficacy may be hindered because of self-quenching of the encapsulated photosensitizer and the small diffusion radii of the generated reactive oxygen species (ROS). Herein, light responsive nano assemblies composed of (Polyethylene glycol)-block-poly(4,5-dimethoxy-2-nitrobenzylmethacrylate) (PEG-b-PNBMA) were designed and loaded with the photosensitizer, Rose Bengal lactone (RB), to act as a smart nanocarrier (RB-M) for the delivery of the photosensitizer. A wirelessly activated light-emitting diode (LED) implant was designed to programmatically induce the release of the loaded RB first, followed by activating PDT after diffusion of RB into the cytoplasm. The results showed that sequential '405-580 nm' irradiation of the RB-M treated 22RV1 cells resulted in the highest PDT outcome among different irradiation protocols. The combination of this smart nanocarrier and sequential '405-580 nm' irradiation strategy exhibited good PDT efficacy against 2D 22RV1 prostate cancer cells as well as 3D cancer cell spheroids. This platform overcomes the light penetration limitations in PDT, and can potentially be applied in cancer bearing patients who are unfit for chemotherapy. STATEMENT OF SIGNIFICANCE: Nanocarriers for the delivery of photosensitizer in photodynamic therapy may result in relatively low therapeutic efficacy because of self-quenching of the encapsulated photosensitizer and the small diffusion radii of the generated reactive oxygen species (ROS). Light responsive smart nanocarriers can potentially overcome this challenge. In this study, a light responsive polymer (Polyethylene glycol)-block-poly(4,5-dimethoxy-2-nitrobenzylmethacrylate) (PEG-b-PNBMA) was synthesized and utilized to fabricate the smart nanocarrier. A wirelessly activated light-emitting diode (LED) implant was designed for light delivery in deep tissue. This new approach permits wirelessly and programmatically control of photosensitizer release and PDT activation under deep tissue, thus significantly enhancing PDT efficacy against prostate cancer cells as well as 3D cancer cell spheroids. This design should have a significant impact on controllable PDT under deep tissue.


Assuntos
Nanopartículas , Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Polietilenoglicóis , Neoplasias da Próstata/tratamento farmacológico
14.
Cell Oncol (Dordr) ; 46(6): 1763-1775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37466744

RESUMO

PURPOSE: High-risk neuroblastoma (NB) still has an unfavorable prognosis and inducing NB differentiation is a potential strategy in clinical treatment, yet underlying mechanisms are still elusive. Here we identify TRIM24 as an important regulator of NB differentiation. METHODS: Multiple datasets and clinical specimens were analyzed to define the role of TRIM24 in NB. The effects of TRIM24 on differentiation and growth of NB were determined by cell morphology, spheres formation, soft agar assay, and subcutaneous xenograft in nude mice. RNA-Seq and qRT-PCR were used to identify genes and pathways involved. Mass spectrometry and co-immunoprecipitation were used to explore the interaction of proteins. RESULTS: Trim24 is highly expressed in spontaneous NB in TH-MYCN transgenic mice and clinical NB specimens. It is associated with poor NB differentiation and unfavorable prognostic. Knockout of TRIM24 in neuroblastoma cells promotes cell differentiation, reduces cell stemness, and inhibits colony formation in soft agar and subcutaneous xenograft tumor growth in nude mice. Mechanistically, TRIM24 knockout alters genes and pathways related to neural differentiation and development by suppressing LSD1/CoREST complex formation. Besides, TRIM24 knockout activates the retinoic acid pathway. Targeting TRIM24 in combination with retinoic acid (RA) synergistically promotes NB cell differentiation and inhibits cell viability. CONCLUSION: Our findings demonstrate that TRIM24 is critical for NB differentiation and suggest that TRIM24 is a promising therapeutic target in combination with RA in NB differentiation therapy.


Assuntos
Neuroblastoma , Camundongos , Animais , Humanos , Camundongos Nus , Ágar , Linhagem Celular Tumoral , Camundongos Knockout , Diferenciação Celular , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Camundongos Transgênicos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte/metabolismo
15.
Ther Clin Risk Manag ; 19: 549-556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404251

RESUMO

Background: The role of immune checkpoint inhibitors in endometrial cancer is limited. At present, the anti-programmed cell death protein 1 (anti-PD-1) antibody is only used in patients with recurrence or metastasis. CD40 is an important immune checkpoint, which is expressed in tumor cells and immune cells, but its distribution characteristics in endometrial carcinoma have not been explored. Methods: Sixty-eight cases of primary endometrial carcinoma treated in Peking University People's Hospital from January 2010 to December 2020 were collected, including 28 cases of poorly differentiated endometrioid adenocarcinoma, 23 cases of serous carcinoma and 17 cases of clear cell carcinoma. The relationship of CD40 expression and PD-L1 expression with their prognosis was analyzed by immunohistochemistry. Results: We found that CD40 had higher expression in non-endometrioid endometrial carcinoma, which lead to the worse prognosis. The effect of high expression of CD40 on the prognosis of endometrioid adenocarcinoma was not significantly different, and most patients with good prognosis. We found that the proportion of CD40 distribution in tumor cells and immune cells may be associated with this heterogeneity. Conclusion: The expression of CD40 in different endometrial cancers may indicate the difference prognosis, which may become a potential target for drug treatment of non-endometrioid endometrial carcinoma.

16.
World Neurosurg ; 178: e254-e264, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37467953

RESUMO

OBJECTIVE: Complex cerebral arteriovenous malformations (AVMs) require a combined therapy of endovascular embolization and microsurgical resection to eliminate the lesion and maximize neurological protection, while a deliberate time interval might contribute to optimal clinical outcomes. The present study aimed to explore the feasibility of this paradigm. METHODS: All patients who underwent deliberately planned presurgery embolization and microsurgery resection between 2015 and 2023 were reviewed, with baseline data, postoperative complications, and follow-up outcomes recorded. The modified Rankin scale (mRS) was used to evaluate clinical outcomes, with mRS 0-2 defined as good. RESULTS: A total of 30 patients were included in the study (15 were ruptured AVMs). The median Spetzler-Martin grade of baseline AVMs was 3 (interquartile range: 2-3). The median interval between the last embolization and microsurgery was 5 days (interquartile range: 2.25-7). The complete removal rate was 100%, and the overall permanent complication rate was 16.67%. At the last follow-up, 26 patients achieved mRS 0-2, while 28 had improved or unaltered mRS. The last follow-up mRS significantly improved from baseline and discharge (P = 0.0006 and P = 0.006). The last follow-up mRS decreased by 0.65 for each additional day of time interval before the 4.4-day inflection point (ß = -0.65, P = 0.02) in the AVM ruptured cohort. CONCLUSIONS: The deliberately staged combined procedure of embolization and microsurgery might be a safe and efficacious strategy for Spetzler-Martin grade 2-5 AVMs, 4-5 days might be an appropriate staged time interval for ruptured AVMs, although further studies are needed to substantiate these findings.


Assuntos
Embolização Terapêutica , Malformações Arteriovenosas Intracranianas , Radiocirurgia , Humanos , Microcirurgia/métodos , Resultado do Tratamento , Estudos Retrospectivos , Embolização Terapêutica/métodos , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/cirurgia , Radiocirurgia/métodos , Ruptura/cirurgia
17.
ACS Nano ; 17(12): 11593-11606, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37306553

RESUMO

Present day strategies for delivery of wireless photodynamic therapy (PDT) to deep-seated targets are limited by the inadequacy of irradiance and insufficient therapeutic depth. Here we report the design and preclinical validation of a flexible wireless upconversion nanoparticle (UCNP) implant (SIRIUS) that is capable of large field, high intensity illumination for PDT of deep-seated tumors. The implant achieves this by incorporating submicrometer core-shell-shell NaYF4 UCNPs into its design, which significantly enhances upconversion efficiency and mitigates light loss from surface quenching. We demonstrate the efficacy of SIRIUS UCNP implant mediated PDT in preclinical breast cancer disease models. In our in vitro experiments, SIRIUS directed 5-Aminolevulinic Acid (5-ALA) based wireless PDT leads to significant reactive oxygen species (ROS) generation and tumor apoptosis in hormonal receptor+/HER2+ (MCF7) and triple-negative (MDA-MB-231) breast cancer cell lines. In our in vivo rodent model, SIRIUS-driven PDT is shown to be significant in regressing tumors when applied to orthotopically inoculated breast tumors. Following successful preclinical validation, we also describe a clinical prototype of UCNP breast implant with potential dual cosmetic and onco-therapeutic functions. SIRIUS is an upconversion breast implant for wireless PDT that fulfils all the design prerequisites necessary for seamless clinical translation.


Assuntos
Implantes de Mama , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ácido Aminolevulínico , Linhagem Celular Tumoral
18.
Mol Biol Rep ; 50(8): 6901-6912, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326746

RESUMO

Uterine serous carcinomas show more frequent mutations of TP53, FBXW7, PIK3CA, and PP2R1A. Furthermore, cyclin-dependent kinase, human epidermal growth factor receptor 2, phosphatidylinositol 3-kinase/protein kinase B, and mammalian target of rapamycin signaling pathways are involved in uterine serous carcinoma progression. However, most patients with uterine serous carcinoma develop chemoresistance to paclitaxel and carboplatin. Moreover, uterine serous carcinoma shows immunosuppressive microenvironment with lower frequency of microsatellite instability. However, some clinical trials of human epidermal growth factor receptor 2/neu and WEE1 targeted therapies showed good effects in prolonging the survival in patients with uterine serous carcinoma. More effective targeted therapies and immunotherapies need to be developed in recurrent uterine serous carcinomas.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Uterinas , Feminino , Humanos , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Cistadenocarcinoma Seroso/genética , Carboplatina , Paclitaxel/uso terapêutico , Imunoterapia , Microambiente Tumoral
19.
Biomaterials ; 291: 121875, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335717

RESUMO

Photodynamic therapy (PDT) is a promising localized cancer treatment modality. It has been used successfully to treat a range of dermatological conditions with comparable efficacy to conventional treatments. However, some drawbacks limit the clinical utility of PDT in treating deep-seated tumors. Notably, the penetration limitation of UV and visible light, commonly applied to activate photosensitizers, makes PDT incompetent in treating deep-seated tumors. Development in light delivery technologies, especially fiber optics, led to improved clinical strategies for accessing deep tissues for irradiation. However, PDT efficacy issues remained partly due to light penetration limitations. In this review, we first summarized the current PDT applications for deep-seated tumor treatment. Then, the most recent progress in advanced techniques to overcome the light penetration limitation in PDT, including using functional nanomaterials that can either self-illuminate or be activated by near-infrared (NIR) light and X-rays as transducers, and implantable light delivery devices were discussed. Finally, current challenges and future opportunities of these technologies were discussed, which we hope may inspire the development of more effective techniques to enhance PDT efficacy against deep-seated tumors.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia
20.
Biomed Res Int ; 2022: 9172405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915787

RESUMO

Objectives: To study the resorption of the herniated lumbar disc (RHLD) and its mechanism in the SD rats of lumbar intervertebral disc herniation treated with Hui medicine moxibustion (HMM). Methods: Forty SD rats were randomly divided into four groups, normal group, lumbar disc herniation (LDH) group, HMM group, and antagonist (HMM+Met12) group, with 10 rats in each group. The rat model of LDH was prepared with the method of lumbar epidural emplacement of the caudal intervertebral disc. In the HMM group and HMM+Met12 groups, 4 weeks after modeling, HMM therapy was performed in the lumbar spine for 3 months with 1 time per day and 20 min each time, the samples were collected 8 weeks after the treatment. The histological degeneration was observed through HE staining, and the neovascularization of intervertebral disc tissues was detected by the expression of CD34 and vascular endothelial growth factor (VEGF). The apoptosis of nucleus pulpous cells was detected by TUNEL assay, and the activity of caspase-3, -8, and -9 and extracellular matrix enzymes was detected by western blotting. Results: HMM treatment significantly improved the behavioral ability of rats with LDH surgery. The morphological structure was obviously destroyed in the LDH group, but disc structure was significantly repaired in the HMM group, and mild structure alterations were observed in the HMM+Met12 group. Higher levels of CD34 and VEGF were detected in the HMM group indicating that neovascularization is formed. The expression level of FasL was significantly increased in the HMM group. The protein expression levels of cleaved-caspase-3, cleaved-caspase-8, and cleaved-caspase-9 in nucleus pulposus (NP) tissues were also elevated when treated with HMM, and the TUNEL staining showed the same results. The protein expression levels of matrix metalloproteinases- (MMP-) 1, MMP-2, MMP-3, MMP-13, and ADAMTS-4 were markedly promoted in the HMM group. Met12, a small peptide antagonist of FasL, significantly reduced the effects of HMM. Conclusion: HMM can promote the formation of neovascularization of lumbar intervertebral disc, support the apoptosis of NP cells through Fas/FasL signaling, and regulate the degradation of extracellular matrix enzyme, which then accelerates the absorption of lumbar intervertebral disc herniation and the recovery of motor function in rats.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Moxibustão , Animais , Caspase 3/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/terapia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA