Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607035

RESUMO

Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Musculares , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Diferenciação Celular
2.
Cell Stem Cell ; 29(4): 610-619.e5, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395188

RESUMO

Human pluripotent stem cell (hPSC)-derived myogenic progenitor cell (MPC) transplantation is a promising therapeutic approach for a variety of degenerative muscle disorders. Here, using an MPC-specific fluorescent reporter system (PAX7::GFP), we demonstrate that hPSC-derived MPCs can contribute to the regeneration of myofibers in mice following local injury and in mice deficient of dystrophin (mdx). We also demonstrate that a subset of PAX7::GFP MPCs engraft within the basal lamina of regenerated myofibers, adopt a quiescent state, and contribute to regeneration upon reinjury and in mdx mouse models. This subset of PAX7::GFP MPCs undergo a maturation process and remodel their molecular characteristics to resemble those of late-stage fetal MPCs/adult satellite cells following in vivo engraftment. These in-vivo-matured PAX7::GFP MPCs retain a cell-autonomous ability to regenerate and can repopulate in the niche of secondary recipient mice, providing a proof of principle for future hPSC-based cell therapy for muscle disorders.


Assuntos
Células-Tronco Pluripotentes , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Distrofina , Humanos , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular , Músculo Esquelético , Mioblastos , Transplante de Células-Tronco
3.
Exp Neurol ; 323: 113086, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639376

RESUMO

Muscular dystrophies are a group of genetic muscle disorders that cause progressive muscle weakness and degeneration. Within this group, Duchenne muscular dystrophy (DMD) is the most common and one of the most severe. DMD is an X chromosome linked disease that occurs to 1 in 3500 to 1 in 5000 boys. The cause of DMD is a mutation in the dystrophin gene, whose encoded protein provides both structural support and cell signaling capabilities. So far, there are very limited therapeutic options available and there is no cure for this disease. In this review, we discuss the existing cell therapy research, especially stem cell-based, which utilize myoblasts, satellite cells, bone marrow cells, mesoangioblasts and CD133+ cells. Finally, we focus on human pluripotent stem cells (hPSCs) which hold great potential in treating DMD. hPSCs can be used for autologous transplantation after being specified to a myogenic lineage. Over the last few years, there has been a rapid development of isolation, as well as differentiation, techniques in order to achieve effective transplantation results of myogenic cells specified from hPSCs. In this review, we summarize the current methods of hPSCs myogenic commitment/differentiation, and describe the current status of hPSC-derived myogenic cell transplantation.


Assuntos
Distrofia Muscular de Duchenne/terapia , Mioblastos/citologia , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco/métodos , Diferenciação Celular/fisiologia , Humanos , Mioblastos/transplante
4.
J Cell Sci ; 132(13)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31138678

RESUMO

VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Neoplasias/metabolismo , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Transcriptoma/genética
5.
J Pathol ; 240(1): 3-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27184927

RESUMO

The Hippo effector YAP has recently been identified as a potent driver of embryonal rhabdomyosarcoma (ERMS). Most reports suggest that the YAP paralogue TAZ (gene symbol WWTR1) functions as YAP but, in skeletal muscle, TAZ has been reported to promote myogenic differentiation, whereas YAP inhibits it. Here, we investigated whether TAZ is also a rhabdomyosarcoma oncogene or whether TAZ acts as a YAP antagonist. Immunostaining of rhabdomyosarcoma tissue microarrays revealed that TAZ is significantly associated with poor survival in ERMS. In 12% of fusion gene-negative rhabdomyosarcomas, the TAZ locus is gained, which is correlated with increased expression. Constitutively active TAZ S89A significantly increased proliferation of C2C12 myoblasts and, importantly, colony formation on soft agar, suggesting transformation. However, TAZ then switches to enhance myogenic differentiation in C2C12 myoblasts, unlike YAP. Conversely, lentiviral shRNA-mediated TAZ knockdown in human ERMS cells reduced proliferation and anchorage-independent growth. While TAZ S89A or YAP1 S127A similarly activated the 8XGTIIC-Luc Hippo reporter, only YAP1 S127A activated the Brachyury (T-box) reporter. Consistent with its oncogene function, TAZ S89A induced expression of the ERMS cancer stem cell gene Myf5 and the serine biosynthesis pathway (Phgdh, Psat1, Psph) in C2C12 myoblasts. Thus, TAZ is associated with poor survival in ERMS and could act as an oncogene in rhabdomyosarcoma. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Proliferação de Células/fisiologia , Transformação Celular Neoplásica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mioblastos/metabolismo , Rabdomiossarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mioblastos/patologia , Prognóstico , Rabdomiossarcoma/genética , Rabdomiossarcoma/mortalidade , Rabdomiossarcoma/patologia , Taxa de Sobrevida , Análise Serial de Tecidos , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA