Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Clin Pharmacol Ther ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724461

RESUMO

Model-based meta-analysis (MBMA) can be used in assisting drug development and optimizing treatment in clinical practice, potentially reducing costs and accelerating drug approval. We aimed to assess the application and quality of MBMA studies. We searched multiple databases to identify MBMA in pharmaceutical research. Eligible MBMA should incorporate pharmacological concepts to construct mathematical models and quantitatively examine and/or predict drug effects. Relevant information was summarized to provide an overview of the application of MBMA. We used AMSTAR-2 and PRISMA 2020 checklists to evaluate the methodological and reporting quality of included MBMA, respectively. A total of 143 MBMA studies were identified. MBMA was increasingly used over time for one or more areas: drug discovery and translational research (n = 8, 5.6%), drug development decision making (n = 42, 29.4%), optimization of clinical trial design (n = 46, 32.2%), medication in special populations (n = 15, 10.5%), and rationality and safety of drug use (n = 71, 49.7%). The included MBMA covered 17 disease areas, with the top three being nervous system diseases (n = 19, 13.2%), endocrine/nutritional/metabolic diseases (n = 17, 11.8%), and neoplasms (n = 16, 11.1%). Of these MBMA studies, 138 (96.5%) were rated as very low quality. The average rate of compliance with PRISMA was only 51.4%. Our findings suggested that MBMA was mainly used to evaluate the efficacy and safety of drugs, with a focus on chronic diseases. The methodological and reporting quality of MBMA should be further improved. Given AMSTAR-2 and PRISMA checklists were not specifically designed for MBMA, adapted assessment checklists for MBMA should be warranted.

2.
Int J Biol Macromol ; : 132520, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772463

RESUMO

Blocking the tumor nutrient supply through angiogenic inhibitors is an effective treatment approach for malignant tumors. However, using angiogenic inhibitors alone may not be enough to achieve a significant tumor response. Therefore, we recently designed a universal drug delivery system combining chemotherapy and anti-angiogenic therapy to target tumor cells while minimizing drug-related side effects. This system (termed as PCCE) is composed of biomaterial chondroitin sulfate (CS), the anti-angiogenic peptide ES2, and paclitaxel (PTX), which collectively enhance antitumor properties. Interestingly, the PCCE system is conferred exceptional cell membrane permeability due to inherent characteristics of CS, including CD44 receptor-mediated endocytosis. The PCCE could respond to the acidic and high glutathione conditions, thereby releasing PTX and ES2. PCCE could effectively inhibit the proliferation, migration, and invasion of tumor cells and cause apoptosis, while PCCE can affect the endothelial cells tube formation and exert anti-angiogenic function. Consistently, more potent in vivo antitumor efficacy and non-toxic sides were demonstrated in B16F10 xenograft mouse models. PCCE can achieve excellent antitumor activity via modulating angiogenic and apoptosis-related factors. In summary, we have successfully developed an intelligent and responsive CS-based nanocarrier known as PCCE for delivering various antitumor drugs, offering a promising strategy for treating malignant tumors.

3.
Heliyon ; 10(7): e28005, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689995

RESUMO

ARPC1B encodes the protein known as actin-related protein 2/3 complex subunit 1 B (ARPC1B), which controls actin polymerization in the human body. Although ARPC1B has been linked to several human malignancies, its function in these cancers remains unclear. TCGA, GTEx, CCLE, Xena, CellMiner, TISIDB, and molecular signature databases were used to analyze ARPC1B expression in cancers. Visualization of data was primarily achieved using R language, version 4.0. Nineteen tumors exhibited high levels of ARPC1B expression, which were associated with different tumor stages and significantly affected the prognosis of various cancers. The level of ARPC1B expression substantially connected the narrative of ARPC1B expression with several TMB cancers and showed significant changes in MSI. Additionally, tolerance to numerous anticancer medications has been linked to high ARPC1B gene expression. Using Gene Set Variation Analysis/Gene Set Enrichment Analysisanalysis and concentrating on Rectum adenocarcinoma (READ), we thoroughly examined the molecular processes of the ARPC1B gene in pan-cancer. Using WGCNA, we examined the co-expression network of READ and ARPC1B. Meanwhile, ten specimens were selected for immunohistochemical examination, which showed high expression of ARPC1B in READ. Human pan-cancer samples show higher ARPC1B expression than healthy tissues. In many malignancies, particularly READ, ARPC1B overexpression is associated with immune cell infiltration and a poor prognosis. These results imply that the molecular biomarker ARPC1B may be used to assess the prognosis and immune infiltration of patients with READ.

5.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605010

RESUMO

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Assuntos
Fator de Crescimento de Hepatócito , Disgenesia da Tireoide , Animais , Camundongos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caderinas/genética , Disgenesia da Tireoide/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
7.
Free Radic Biol Med ; 218: 166-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582229

RESUMO

BACKGROUND: Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS: We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS: Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS: We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.


Assuntos
Autofagia , Metilação de DNA , Dioxigenases , Modelos Animais de Doenças , Epigênese Genética , Hepatócitos , Hepatopatia Gordurosa não Alcoólica , Diester Fosfórico Hidrolases , Regiões Promotoras Genéticas , Pirofosfatases , Animais , Humanos , Masculino , Camundongos , Autofagia/genética , Tetracloreto de Carbono/toxicidade , Dieta Hiperlipídica/efeitos adversos , Dioxigenases/genética , Dioxigenases/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo
10.
Biometals ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483766

RESUMO

Iron is an essential element for the normal functioning of living organisms, but excessive iron deposition can lead to organ damage. This study aims to investigate the interaction between the endoplasmic reticulum stress signaling pathway and the PI3K/AKT/mTOR signaling pathway in liver injury induced by iron overload in chicks. Rspectively, 150 one-day-old broilers were divided into three groups and supplemented with 50 (C), 500 (E1), and 1000 (E2) mg ferrous sulfate monohydrate/kg in the basal diet. Samples were taken after continuous feeding for 14 days. The results showed that iron overload could upregulate the levels of ALT and AST. Histopathological examination revealed bleeding in the central vein of the liver accompanied by inflammatory cell infiltration. Hoechst staining showed that the iron overload group showed significant bright blue fluorescence, and ultrastructural observations showed chromatin condensation as well as mitochondrial swelling and cristae disorganization in the iron overload group. RT-qPCR and Western blot results showed that iron overload upregulated the expression of Bax, Caspase-3, Caspase-9, GRP78, GRP94, P-PERK, ATF4, eIF2α, IRE1, and ATF6, while downregulating the expression of Bcl-2 and the PI3K/AKT/mTOR pathway. XBP-1 splicing experiment showed significant splicing of XBP-1 gene after iron overload. PCA and correlation analysis suggested a potential association between endoplasmic reticulum stress, the PI3K/AKT/mTOR signaling pathway, and liver injury in chicks. In summary, iron overload can induce cell apoptosis and liver injury by affecting endoplasmic reticulum stress and the PI3K/AKT/mTOR signaling pathway.

11.
World J Gastrointest Oncol ; 16(2): 251-254, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425398

RESUMO

In this editorial, we review the article published in World J Gastrointest Oncol 2019, 11: 1031-1042. We specifically focus on the occurrence, clinical characteristics, and risk factors of fluoropyrimidine drug-related cardiotoxicity in patients with gastrointestinal tumors. Despite significant advancements in diagnostic and therapeutic techniques that have reduced mortality rates associated with digestive system tumors, the incidence and mortality rates of treatment-related cardiotoxicity have been increasing, severely impacting the survival and prognosis of cancer patients. Fluoropyrimidine drugs are widely used as antimetabolites in the treatment of malignant tumors, including gastrointestinal tumors, and they represent the second largest class of drugs associated with cardiotoxicity. However, there is often a lack of awareness or understanding regarding their cardiotoxic effects and associated risks.

12.
J Dent Sci ; 19(1): 51-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303864

RESUMO

Background/purpose: Computer-assisted dynamic navigation surgery could provide accurate implant placement. However, its low efficiency was always criticized by dental surgeons. The purpose of this study was to evaluate the accuracy and efficiency of a calibration approach with reflective wafers in dynamic navigation for implant placement. Materials and methods: Eighty implants were placed in the standardized polyurethane mandibular models under dynamic navigation and divided into 2 groups according to the calibration methods (n = 40). The U-shaped tube (UT) group used a prefabricated U-shaped tube embedded with radiopaque markers. The reflective wafers (RW) group used a fixation with 3 round reflective wafers as markers. Postoperative cone beam computed tomography images were obtained for implants deviation analyses. The calibration time was used to evaluate the efficiency of the 2 methods. Results: Significant differences were found in the trueness and efficiency between the 2 groups (P < 0.05). The 3D deviations at the implant platform and apex were smaller in UT group (0.89 ± 0.28 and 0.79 ± 0.30 mm, respectively) than in the RW group (0.99 ± 0.28 and 0.98 ± 0.30 mm, respectively). The angular deviation was larger in the UT group (2.16 ± 1.12°) than in the RW group (1.53 ± 0.88°). The calibration approach of RW group was more efficient than the UT group (2.05 ± 0.55 and 7.50 ± 0.71 min, respectively). Conclusion: The calibration method of RW improved the efficiency significantly and achieved equivalent trueness with UT for dynamic navigation during implant placement.

14.
Int J Biol Macromol ; 262(Pt 1): 129671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423906

RESUMO

Tumor growth and metastasis heavily rely on angiogenesis, crucial for solid tumor development. Inhibiting angiogenesis associated with tumors emerges as a potent therapeutic approach. Our previous work synthesized the chondroitin sulfate-modified antiangiogenic peptide CS-ES2-AF (CS-EA), which exhibited better antiangiogenic activity, longer half-life, and more robust targeting. In this work, we further evaluated the stability in vitro, cellular uptake mechanism, cell apoptosis mechanism, antitumor activity in vivo, and safety of CS-EA. The stability of CS-EA was consistently superior to that of EA at different temperatures and in different pH ranges. Furthermore, CS-EA mainly entered EAhy926 cells through the clathrin-mediated endocytosis pathway. CS-EA inhibited endothelial cell proliferation, and induced cell apoptosis through downregulating the Bcl-2, reducing mitochondria membrane potential, upregulating cytochrome c, Caspase 3, and reactive oxygen species levels. CS-EA showed better antitumor activity in the B16 xenografted tumor model, with a tumor inhibition rate 1.92 times higher than EA. Simultaneously, it was observed that CS-EA did not cause any harmful effects on the vital organs of the mice. These findings indicate that CS-EA holds significant promise for the treatment of tumors.


Assuntos
Sulfatos de Condroitina , Neoplasias , Animais , Camundongos , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
15.
J Integr Med ; 22(1): 83-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311542

RESUMO

OBJECTIVE: Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs; however, concerns regarding complexities and side effects persist, driving research for more effective, low-risk strategies. The promotion of white adipose tissue (WAT) browning has emerged as a promising approach. Moreover, alisol B 23-acetate (AB23A) has demonstrated efficacy in addressing metabolic disorders, suggesting its potential as a therapeutic agent in obesity management. Therefore, in this study, we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet (HFD). METHODS: An obesity mouse model was established by administration of an HFD. Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests. Adipocyte size was determined using hematoxylin and eosin staining. The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction. Metabolic cage monitoring involved the assessment of various parameters, including food and water intake, energy metabolism, respiratory exchange rates, and physical activity. Moreover, oil red O staining was used to evaluate intracellular lipid accumulation. A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways. RESULTS: AB23A administration significantly reduced the weight of obese mice, decreased the mass of inguinal WAT, epididymal WAT, and perirenal adipose tissue, improved glucose and insulin metabolism, and reduced adipocyte size. Moreover, treatment with AB23A promoted the expression of browning markers in WAT, enhanced overall energy metabolism in mice, and had no discernible effect on food intake, water consumption, or physical activity. In 3T3-L1 cells, AB23A inhibited lipid accumulation, and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulatory element-binding protein-1 (mTOR-SREBP1) signaling pathway. Furthermore, 3-isobutyl-1-methylxanthine, dexamethasone and insulin, at concentrations of 0.25 mmol/L, 0.25 µmol/L and 1 µg/mL, respectively, induced activation of the mTOR-SREBP1 signaling pathway, which was further strengthened by an mTOR activator MHY1485. Notably, MHY1485 reversed the beneficial effects of AB23A in 3T3-L1 cells. CONCLUSION: AB23A promoted WAT browning by inhibiting the mTOR-SREBP1 signaling pathway, offering a potential strategy to prevent obesity. Please cite this article as: Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. J Integr Med. 2024; 22(1): 83-92.


Assuntos
Colestenonas , Dieta Hiperlipídica , Obesidade , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Tecido Adiposo Branco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Glucose/metabolismo , Insulina/farmacologia , Lipídeos/farmacologia , Lipídeos/uso terapêutico , Mamíferos/metabolismo
16.
Clin Oral Implants Res ; 35(4): 386-395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286766

RESUMO

OBJECTIVES: To assess the efficacy of dynamic computer-aided surgery (dCAS) in replacing a single missing posterior tooth, we compare outcomes when using registration-and-fixation devices positioned anterior or posterior to the surgical site. Registration is performed on either the anterior or opposite posterior teeth. METHODS: Forty individuals needing posterior single-tooth implant placement were randomly assigned to anterior or posterior registration. Nine parameters were analyzed to detect the deviations between planned and actual implant placement, using Mann-Whitney and t-tests for nonnormally and normally distributed data, respectively. RESULTS: The overall average angular deviation for this study was 2.08 ± 1.12°, with the respective average 3D platform and apex deviations of 0.77 ± 0.32 mm and 0.88 ± 0.32 mm. Angular deviation values for individuals in the anterior and posterior registration groups were 1.58°(IQR: 0.98°-2.38°) and 2.25°(IQR: 1.46°-3.43°), respectively (p = .165), with 3D platform deviations of 0.81 ± 0.29 mm and 0.74 ± 0.36 mm (p = .464), as well as 3D apex deviations of 0.89 ± 0.32 mm and 0.88 ± 0.33 mm (p = .986). No significant variations in absolute buccolingual (platform, p = .659; apex, p = .063), apicocoronal (platform, p = .671; apex, p = .649), or mesiodistal (platform, p = .134; apex, p = .355) deviations were observed at either analyzed levels. CONCLUSIONS: Both anterior and posterior registration approaches facilitate accurate dCAS-mediated implant placement for single missing posterior teeth. The device's placement (posterior-to or anterior-to the surgical site) did not affect the clinician's ability to achieve the planned implant location.


Assuntos
Implantes Dentários , Cirurgia Assistida por Computador , Dente , Humanos , Implantação Dentária Endóssea , Tomografia Computadorizada de Feixe Cônico , Desenho Assistido por Computador , Imageamento Tridimensional
17.
Heliyon ; 10(1): e23531, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192769

RESUMO

Oxidative stress plays a crucial role in the development of osteoporosis. In this study, it was observed that donkey bone collagen (DC) at a concentration of 500 µg/mL scavenged 17.89 % of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals, indicating its antioxidant properties. Additionally, when an oxidative damage osteoblast model was created using H2O2, 100 µg/mL DC demonstrated the ability to enhance cell survival by 27.31 %. Furthermore, 50 µg/mL DC increased the intracellular differentiation marker alkaline phosphatase (ALP) level by 62.65 %. Additionally, the study revealed that DC significantly increased the expression of osteoporosis-related factors in serum and effectively restored the abnormal structure of spongy bone in mice osteoporosis model. Peptides (GGWFL, ANLGPA, and GWFK) isolated from DC through gastrointestinal digestion and subsequent enzymatic purification in vitro demonstrated the ability to safeguard osteoblasts from H2O2-induced damage by reducing intracellular reactive oxygen species (ROS). This protection resulted in enhanced cell survival and promoted osteoblast differentiation. This investigation underscores that DC can shield oxidative damage osteoblast model from oxidative stress, ameliorate osteoporosis, and enhance bone density in mice osteoporosis model. These findings suggest various DC applications in the food and medicine industries.

18.
BMC Womens Health ; 24(1): 28, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191409

RESUMO

BACKGROUD: Laparoscopic adenomyomectomy combined with intraoperative placement of levonorgestrel-releasing intrauterine device (LNG-IUS) is a novel conservative surgical procedure for adenomyosis. Our study aimed to compare the efficacy of surgery with or without intraoperative placement of LNG-IUS treatment in adenomyosis. METHODS: We retrospectively reviewed the medical records of adenomyosis patients who received laparoscopic adenomyomectomy from January 2014 to April 2020, finally including 70 patients undergoing surgery-LNG-IUS as group A and 69 patients undegoing surgery only as group B. Risk factors for three-year relapse were analyzed using Cox's multivariate proportional hazard analysis. RESULTS: Visual analog scale and Mansfield-Voda-Jorgensen Menstrual Bleeding Scale scores of group A at 3, 6, 12, 24, and 36 months were significantly lower than those of group B at the corresponding points (P < .001 for both scales). Individuals in both groups showed statistically significant symptom relief. The recurrence rate in group A was significantly lower than that in group B at 36 months after the surgery (2.94% vs. 32.84%, P < .001). A cox proportional hazard model showed that relapse was significantly associated with coexisting ovarian endometriosis (adjusted hazard ratio [aHR], 2.94; 95% confidence interval [CI], 1.33-7.02, P = .015). Patients who received surgery-LNG-IUS had a lower risk of recurrence than those with surgery-alone (aHR, 0.07; 95% CI, 0.016-0.31, P < .001). CONCLUSIONS: Conservative surgery with intraoperative placement of LNG-IUS is effective and well-accepted for long-term therapy with a lower recurrence rate for adenomyosis. Coexistent ovarian endometriosis is a major factor for adenomyosis relapse.


Assuntos
Adenomiose , Endometriose , Dispositivos Intrauterinos , Laparoscopia , Feminino , Humanos , Adenomiose/complicações , Adenomiose/cirurgia , Endometriose/complicações , Endometriose/tratamento farmacológico , Endometriose/cirurgia , Levanogestrel/uso terapêutico , Estudos Retrospectivos , Recidiva
19.
Toxicol Appl Pharmacol ; 483: 116829, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246288

RESUMO

Aucubin (AU) is a naturally occurring iridoid glycoside known to possess a wide range of pharmacological properties and exhibit a notable protective effect against various pathological conditions. Studies have shown that AU has neuroprotective properties in different neurological diseases. However, its potential protective effects against cerebral ischemia-reperfusion (CIR) injury have not been thoroughly investigated. This study aimed to investigate the impact of AU on CIR injury and explore the underlying mechanism. Cultured neurons treated with AU showed a significant reduction in apoptosis, oxidative stress, and inflammation caused by oxygen-glucose deprivation and reoxygenation (OGD/R). In a rat model of CIR, treatment with AU resulted in a significant decrease in cerebral infarct size and neurological deficits. AU treatment also reversed the increased apoptosis, oxidative stress, and inflammation in the brains of CIR rats. Furthermore, AU was found to enhance the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), accompanied by increased phosphorylation of serine/threonine-protein kinase AKT and glycogen synthase kinase-3 beta (GSK-3ß). The activation of Nrf2 induced by AU was reversed when the AKT-GSK-3ß cascade was blocked. Additionally, the neuroprotective effect of AU was significantly reduced when Nrf2 was pharmacologically suppressed. In conclusion, these findings suggest that AU exerts a neuroprotective effect on CIR injury, and this effect is mediated by the activation of Nrf2 through the AKT-GSK-3ß axis. This work highlights the potential of AU as a drug candidate for the treatment of CIR injury.


Assuntos
Glucosídeos Iridoides , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Transdução de Sinais , Estresse Oxidativo , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
20.
Kaohsiung J Med Sci ; 40(3): 231-243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38180297

RESUMO

Circular RNA (circRNA) plays a key part in the pathological process of gastric cancer (GC). The study is organized to analyze the function of circPRDM5 in GC cell tumor properties. Expression levels of circPRDM5, miR-485-3p, glucosaminyl (N-acetyl) transferase 4 (GCNT4), ki67, E-cadherin, N-cadherin, and hexokinase 2 (HK2) were analyzed by quantitative real-time polymerase chain reaction (PCR), Western blotting or immunohistochemistry assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were investigated by transwell assay. Glycolysis was evaluated by the Seahorse XF Glycolysis Stress Test Kit. Dual-luciferase reporter assay and RNA pull-down assay were performed to identify the associations among circPRDM5, miR-485-3p, and GCNT4. Xenograft mouse model assay was conducted to determine the effects of circPRDM5 on tumor formation in vivo. CircPRDM5 and GCNT4 expression were downregulated, while miR-485-3p expression was upregulated in GC tissues and cells when compared with paracancerous tissues or human gastric epithelial cells. CircPRDM5 overexpression inhibited proliferation, migration, invasion, and glucose metabolism of GC cells; however, circPRDM5 depletion had the opposite effects. CircPRDM5 repressed tumor properties of GC cells in vivo. MiR-485-3p restoration relieved circPRDM5-induced effects in GC cells. GCNT4 overexpression remitted the promoting effects of miR-485-3p mimics on GC cell malignancy. CircPRDM5 acted as a sponge for miR-485-3p, and GCNT4 was identified as a target gene of miR-485-3p. Moreover, circPRDM5 regulated GCNT4 expression by interacting with miR-485-3p.CircPRDM5 acted as a miR-485-3p sponge to inhibit GC progression by increasing GCNT4 expression, proving a potential target for GC therapy.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Glicólise/genética , Proliferação de Células/genética , Glucose , MicroRNAs/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA