Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(24): e2306810, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647380

RESUMO

Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation. In this study, lncRNA sequencing (lncRNA seq) is conducted on five pairs of HBV-positive and HBV-negative liver tissue. Through analysis, HOXA-AS2 (HOXA cluster antisense RNA 2) is identified as a significantly upregulated lncRNA in HBV-infected livers. Further experiments demonstrate that HBV DNA polymerase (DNA pol) induces HOXA-AS2 after establishing persistent high-level HBV replication. Functional studies reveal that HOXA-AS2 physically binds to cccDNA and significantly inhibits its transcription. Mechanistically, HOXA-AS2 recruits the MTA1-HDAC1/2 deacetylase complex to cccDNA minichromosome by physically interacting with metastasis associated 1 (MTA1) subunit, resulting in reduced acetylation of histone H3 at lysine 9 (H3K9ac) and lysine 27 (H3K27ac) associated with cccDNA and subsequently suppressing cccDNA transcription. Altogether, the study reveals a mechanism to self-limit HBV replication, wherein the upregulation of lncRNA HOXA-AS2, induced by HBV DNA pol, can epigenetically suppress cccDNA transcription.


Assuntos
DNA Circular , Epigênese Genética , Vírus da Hepatite B , RNA Longo não Codificante , Proteínas Repressoras , Transativadores , Humanos , Vírus da Hepatite B/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Epigênese Genética/genética , DNA Circular/genética , DNA Circular/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Transcrição Gênica/genética , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia
2.
Plant J ; 92(3): 452-468, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849613

RESUMO

Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (Ar ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with Ar , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.


Assuntos
Brassica napus/genética , Brassica/genética , Variação Genética , Genoma de Planta/genética , Genômica , Sequência de Aminoácidos , Evolução Biológica , Cruzamento , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNA
3.
Plant Sci ; 252: 388-399, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717475

RESUMO

Seed oil content is an important agricultural trait in rapeseed breeding. Although numerous quantitative trait locus (QTL) have been identified, most of them cannot be applied in practical breeding mainly due to environmental instability or large confidence intervals. The purpose of this study was to identify and validate high quality and more stable QTLs by combining linkage mapping and genome-wide association study (GWAS). For linkage mapping, we constructed two F2 populations from crosses of high-oil content (∼50%) lines 6F313 and 61616 with a low-oil content (∼40%) line 51070. Two high density linkage maps spanned 1987cM (1659 bins) and 1856cM (1746 bins), respectively. For GWAS, we developed more than 34,000 high-quality SNP markers based on 227 accessions. Finally, 40 QTLs and 29 associations were established by linkage and association mapping in different environments. After merging the results, 32 consensus QTLs were obtained and 7 of them were identified by both mapping methods. Seven overlapping QTLs covered an average confidence interval of 183kb and explained the phenotypic variation of 10.23 to 24.45%. We further developed allele-specific PCR primers to identify each of the seven QTLs. These stable QTLs should be useful in gene cloning and practical breeding application.


Assuntos
Brassica napus/genética , Óleos de Plantas/metabolismo , Locos de Características Quantitativas , Brassica napus/metabolismo , Mapeamento Cromossômico , Primers do DNA , Estudos de Associação Genética , Fenótipo , Sementes/genética , Sementes/metabolismo
4.
Nat Biotechnol ; 33(5): 524-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25893780

RESUMO

Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.


Assuntos
Evolução Molecular , Genoma de Planta , Gossypium/genética , Análise de Sequência de DNA , Aminoácido Oxirredutases/genética , Sequência de Bases , Mapeamento Cromossômico , Fibra de Algodão , Elementos de DNA Transponíveis/genética , Glucosiltransferases/genética , Filogenia , Poliploidia
5.
Nat Genet ; 46(6): 567-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24836287

RESUMO

The complex allotetraploid nature of the cotton genome (AADD; 2n = 52) makes genetic, genomic and functional analyses extremely challenging. Here we sequenced and assembled the Gossypium arboreum (AA; 2n = 26) genome, a putative contributor of the A subgenome. A total of 193.6 Gb of clean sequence covering the genome by 112.6-fold was obtained by paired-end sequencing. We further anchored and oriented 90.4% of the assembly on 13 pseudochromosomes and found that 68.5% of the genome is occupied by repetitive DNA sequences. We predicted 41,330 protein-coding genes in G. arboreum. Two whole-genome duplications were shared by G. arboreum and Gossypium raimondii before speciation. Insertions of long terminal repeats in the past 5 million years are responsible for the twofold difference in the sizes of these genomes. Comparative transcriptome studies showed the key role of the nucleotide binding site (NBS)-encoding gene family in resistance to Verticillium dahliae and the involvement of ethylene in the development of cotton fiber cells.


Assuntos
Genoma de Planta , Gossypium/genética , Sítios de Ligação , Mapeamento Cromossômico/métodos , DNA de Plantas , Resistência à Doença/genética , Etilenos/química , Evolução Molecular , Biblioteca Gênica , Modelos Genéticos , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Poliploidia , Retroelementos , Análise de Sequência de DNA , Especificidade da Espécie , Sequências Repetidas Terminais , Transcriptoma , Verticillium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA