Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(3): 123, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38538282

RESUMO

BACKGROUND: Copper dysregulation has been linked to liver disease, cardiac dysfunction, neuropathy, and anemia. Previous investigations have been undertaken to demonstrate the impact of cuproptosis-related genes (CRGs) on the poor prognosis of hepatocellular carcinoma (HCC), while the prognostic significance and beneath molecular basis of DNA-methylation sites located in CRGs remain unknown. This study aims to identify CRG-located DNA-methylation sites linked to patient prognosis and establish a novel prognostic biomarkers combination for CRG-located DNA-methylation signature. METHODS: The prognostic biomarkers combination was established through multivariate-Cox-regression after CRG-located DNA-methylation sites tied to the outcome of patients emerged by univariate-Cox-regression. The correlation between signature and immune cell infiltration levels, immune-checkpoint-associated genes was analyzed using spearman correlation and the difference was contrasted between different groups utilizing the Mann-Whitney-U test. Real-time quantitative methylation-specific polymerase chain reaction (RT-qMSP) was used to identify gene methylation. RESULTS: A novel prognostic biomarkers combination for CRG-located DNA-methylation signature was established. Subsequently, the independence of this methylation signature from clinical features and its correlation with immune infiltrative and immune checkpoints in HCC were also investigated. DNA methylation alterations can influence the onset, development, and treatment of various tumors by regulating the transcription of corresponding genes. Our analysis found that cg05706061 contained in prognosis signature was located in the promoter region of the cuproptosis-related gene SLC31A2. The DNA-methylation level of cg05706061 demonstrated significantly different between tumor and normal tissue, and significantly correlated with the expression of SLC31A2. We further investigated the promoter methylation status of SLC31A2 by qMSP, the result showed that the DNA-methylation level of SLC31A2 in HCC cell lines were significantly decreased compared with normal liver cells. CONCLUSIONS: Our findings reveal possible mechanisms of CRG-located DNA-methylation on the advancement of HCC and offers new perspectives for prognostic assessment and treatment options.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Metilação de DNA , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Biomarcadores , DNA , Apoptose , Microambiente Tumoral
2.
J Exp Clin Cancer Res ; 42(1): 331, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049865

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies and is characterized by reprogrammed metabolism. Ferroptosis, a programmed cell death dependent on iron, has emerged as a promising strategy for CRC treatment. Although small nucleolar RNAs are extensively involved in carcinogenesis, it is unclear if they regulate ferroptosis during CRC pathogenesis. METHODS: The dysregulated snoRNAs were identified using published sequencing data of CRC tissues. The expression of the candidate snoRNAs, host gene and target gene were assessed by real-time quantitative PCR (RT-qPCR), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and western blots. The biological function of critical molecules was investigated using in vitro and in vivo strategies including Cell Counting Kit-8 (CCK8), colony formation assay, flow cytometry, Fe2+/Fe3+, GSH/GSSG and the xenograft mice models. The ribosomal activities were determined by polysome profiling and O-propargyl-puromycin (OP-Puro) assay. The proteomics was conducted to clarify the downstream targets and the underlying mechanisms were validated by IHC, Pearson correlation analysis, protein stability and rescue assays. The clinical significance of the snoRNA was explored using the Cox proportional hazard model, receiver operating characteristic (ROC) and survival analysis. RESULTS: Here, we investigated the SNORA56, which was elevated in CRC tissues and plasma, and correlated with CRC prognosis. SNORA56 deficiency in CRC impaired proliferation and triggered ferroptosis, resulting in reduced tumorigenesis. Mechanistically, SNORA56 mediated the pseudouridylation of 28 S rRNA at the U1664 site and promoted the translation of the catalytic subunit of glutamate cysteine ligase (GCLC), an indispensable rate-limiting enzyme in the biosynthesis of glutathione, which can inhibit ferroptosis by suppressing lipid peroxidation. CONCLUSIONS: Therefore, the SNORA56/28S rRNA/GCLC axis stimulates CRC progression by inhibiting the accumulation of cellular peroxides, and it may provide biomarker and therapeutic applications in CRC.


Assuntos
Neoplasias Colorretais , Ferroptose , Glutamato-Cisteína Ligase , RNA Nuclear Pequeno , Animais , Humanos , Camundongos , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Ferroptose/genética , Hibridização in Situ Fluorescente , RNA Ribossômico , RNA Nuclear Pequeno/genética
3.
J Gastrointest Oncol ; 14(4): 1788-1805, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37720445

RESUMO

Background: The incidence rate of hepatoblastoma (HB), which is the most prevalent malignant tumour among children, rises each year. According to recent studies, a number of neoplastic disorders and ferroptosis are intimately connected. This study aims to identify key ferroptosis-related genes in HB and explore new directions for the diagnosis and treatment of HB. Methods: Differentially expressed ferroptosis-related genes were identified using the Gene Expression Omnibus datasets. The functional annotation of candidate genes was evaluated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Machine learning and receiver operating characteristic (ROC) curves revealed protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2), tribbles homolog 2 (TRIB2), and liver-type glutaminase (GLS2) as potential diagnostic genes of HB. By using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry, relative expression of PRKAA2 was examined. The effect of PRKAA2 on proliferation, apoptosis, and ferroptosis of HB cells was verified in vitro and in vivo. Fisher's exact test was used to evaluate the clinical significance of PRKAA2 in HB. Results: The prognostic indicators had a substantial correlation with PRKAA2 expression, which rose dramatically in HB tissues. PRKAA2 promotes proliferation and inhibits ferroptosis in HB cells. PRKAA2 plays a role in ferroptosis by regulating hypoxia-inducible factor 1α (HIF-1α) and transferrin receptor 1 (TFR1). Conclusions: PRKAA2 functions as a tumor-promoting factor in HB by promoting cell proliferation and prohibiting ferroptosis. Ferroptosis-related genes PRKAA2 is a potential diagnostic and prognostic marker for HB as well as a novel therapeutic target in the future.

5.
Oncogene ; 42(41): 3035-3046, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620450

RESUMO

Evidence indicates that small nucleolar RNAs (snoRNAs) participate in tumorigenesis and development and could be promising biomarkers for colorectal cancer (CRC). Here, we examine the profile of snoRNAs in CRC and find that expression of SNORD11B is increased in CRC tumor tissues and cell lines, with a significant positive correlation between SNORD11B expression and that of its host gene NOP58. SNORD11B promotes CRC cell proliferation and invasion and inhibits apoptosis. Mechanistically, SNORD11B promotes the processing and maturation of 18 S ribosomal RNA (rRNA) by mediating 2'-O-methylated (Nm) modification on the G509 site of 18 S rRNA. Intriguingly, SNORD11B mediates Nm modification on the G225 site of MIRLET7A1HG (pri-let-7a) with a canonical motif, resulting in degradation of pri-let-7a, inhibition of DGCR8 binding, reduction in mature tumor suppressor gene let-7a-5p expression, and upregulation of downstream oncogene translation. SNORD11B performs comparably to CEA and CA199 in diagnosing CRC. High expression of SNORD11B is significantly correlated with a more advanced TNM stage and lymph node metastasis, which indicates poor prognosis.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Metilação , Proteínas de Ligação a RNA/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
6.
Cell Mol Gastroenterol Hepatol ; 16(5): 735-755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478905

RESUMO

BACKGROUND & AIMS: Hepatoblastoma (HB) is a common pediatric malignant liver tumor that is characterized by a low level of genetic mutations. Alternative splicing (AS) has been shown to be closely associated with cancer progression, especially in tumors with a low mutational burden. However, the role of AS in HB remains unknown. METHODS: Transcriptome sequencing was performed on 5 pairs of HB tissues and matched non-tumor tissues to delineate the AS landscape in HB. AS events were validated in 92 samples from 46 patients. RNA pull-down and RNA immunoprecipitation assays were carried out to identify splicing factors that regulate the AS of small nucleolar RNA host genes (SNHG). Patient-derived organoids (PDOs) were established to investigate the role of the splicing factor polyadenylate-binding nuclear protein 1 (PABPN1). RESULTS: This study uncovered aberrant alternative splicing in HB, including lncRNAs from SNHG family that undergo intron retention in HB. Further investigations revealed that PABPN1, a significantly upregulated RNA binding protein, interacts with splicing machinery in HB, inducing the intron retention of these SNHG RNAs and the downregulation of intronic small nucleolar RNAs (snoRNAs). Functionally, PABPN1 acts as an oncofetal splicing regulator in HB by promoting cell proliferation and DNA damage repair via inducing the intron retention of SNHG19. Knock-down of PABPN1 increases the cisplatin sensitivity of HB PDOs. CONCLUSIONS: Our findings revealed the role of intron retention in regulating snoRNA expression in hepatoblastoma, explained detailed regulatory mechanism between PABPN1 and the intron retention of SNHG RNAs, and provided insight into the development of new HB treatment options.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , RNA Longo não Codificante , Criança , Humanos , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Processamento Alternativo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo
7.
Open Med (Wars) ; 18(1): 20230715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251536

RESUMO

Patients with castration-resistant prostate cancer (CRPC) often develop drug resistance after treatment with enzalutamide. The goal of our study was to identify the key genes related to enzalutamide resistance in CRPC and to provide new gene targets for future research on improving the efficacy of enzalutamide. Differential expression genes (DEGs) associated with enzalutamide were obtained from the GSE151083 and GSE150807 datasets. We used R software, the DAVID database, protein-protein interaction networks, the Cytoscape program, and Gene Set Cancer Analysis for data analysis. The effect of RAD51 knockdown on prostate cancer (PCa) cell lines was demonstrated using Cell Counting Kit-8, clone formation, and transwell migration experiments. Six hub genes with prognostic values were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which were significantly associated with immune cell infiltration in PCa. High RAD51, BLM, EXO1, and RFC2 expression was associated with androgen receptor signaling pathway activation. Except for APOE, high expression of hub genes showed a significant negative correlation with the IC50 of Navitoclax and NPK76-II-72-1. RAD51 knockdown inhibited the proliferation and migration of PC3 and DU145 cell lines and promoted apoptosis. Additionally, 22Rv1 cell proliferation was more significantly inhibited with RAD51 knockdown than without RAD51 knockdown under enzalutamide treatment. Overall, six key genes associated with enzalutamide resistance were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which are potential therapeutic targets for enzalutamide-resistant PCa in the future.

8.
Clin Transl Med ; 13(4): e1239, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37070251

RESUMO

BACKGROUND: Accumulating studies have shown that La-related protein 1 (LARP1) is involved in the occurrence and development of various tumours. However, the expression pattern and biological role of LARP1 in hepatoblastoma (HB) remain unclear so far. METHODS: LARP1 expression level in HB and adjacent normal liver tissues was analysed by qRT-PCR, Western blotting and immunohistochemistry assays. The prognostic significance of LARP1 was evaluated by Kaplan-Meier method and multivariate Cox regression analysis. In vitro and in vivo functional assays were implemented to clarify the biological effects of LARP1 on HB cells. Mechanistically, the regulatory roles of O-GlcNAcylation and circCLNS1A in LARP1 expression were investigated by co-immunoprecipitation (co-IP), immunofluorescence, RNA immunoprecipitation (RIP), RNA pull-down and protein stability assays. Moreover, RNA-sequencing, co-IP, RIP, mRNA stability and poly(A)-tail length assays were performed to investigate the association between LARP1 and DKK4. The expression and diagnostic significance of plasma DKK4 protein in multi-centre cohorts were evaluated by ELISA and ROC curves. RESULTS: LARP1 mRNA and protein levels were remarkably elevated in HB tissues and associated with worse prognosis of HB patients. LARP1 knockdown abolished cell proliferation, triggered cell apoptosis in vitro as well as prohibited tumour growth in vivo, whereas LARP1 overexpression incited HB progression. Mechanistically, O-GlcNAcylation of LARP1 Ser672 by O-GlcNAc transferase strengthened its binding to circCLNS1A and then protected LARP1 from TRIM-25-mediated ubiquitination and proteolysis. LARP1 upregulation subsequently led to DKK4 mRNA stabilisation by competitively interacting with PABPC1 to prevent DKK4 mRNA from B-cell translocation gene 2-dependent deadenylation and degradation, thus facilitating ß-catenin protein expression and nuclear import. CONCLUSION: This study indicates that upregulated protein level of O-GlcNAcylated LARP1 mediated by circCLNS1A promotes the tumorigenesis and progression of HB through LARP1/DKK4/ß-catenin axis. Hence, LARP1 and DKK4 are promising therapeutical target and diagnostic/prognostic plasma biomarker for HB.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Ribonucleoproteínas , Humanos , beta Catenina/metabolismo , Hepatoblastoma/diagnóstico , Hepatoblastoma/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/genética , RNA Circular/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Antígeno SS-B
9.
Nat Commun ; 14(1): 1307, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36894556

RESUMO

mRNA delivery has shown high application value in the treatment of various diseases, but its effective delivery is still a major challenge at present. Herein, we propose a lantern-shaped flexible RNA origami for mRNA delivery. The origami is composed of a target mRNA scaffold and only two customized RGD-modified circular RNA staples, which can compress the mRNA into nanoscale and facilitate its endocytosis by cells. In parallel, the flexible structure of the lantern-shaped origami allows large regions of the mRNA to be exposed and translated, exhibiting a good balance between endocytosis and translation efficiency. The application of lantern-shaped flexible RNA origami in the context of the tumor suppressor gene, Smad4 in colorectal cancer models demonstrates promising potential for accurate manipulation of protein levels in in vitro and in vivo settings. This flexible origami strategy provides a competitive delivery method for mRNA-based therapies.


Assuntos
Neoplasias Colorretais , RNA , Humanos , RNA Mensageiro/genética , RNA Circular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo
10.
Cell Death Discov ; 9(1): 36, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717552

RESUMO

Hepatoblastoma (HB) is the most common paediatric liver malignancy. Dysregulation of small nucleolar RNAs (snoRNAs) is a critical inducer of tumour initiation and progression. However, the association between snoRNAs and HB remains unknown. Here, we conducted snoRNA expression profiling in HB by snoRNA sequencing and identified a decreased level of SNORA14A, a box H/ACA snoRNA, in HB tissues. Low expression of SNORA14A was correlated with PRETEXT stage and metastasis in patients. Functionally, overexpression of SNORA14A suppressed HB cell proliferation and triggered cell apoptosis and G2/M phase arrest. Mechanistically, SNORA14A overexpression promoted the processing and maturation of the 18 S ribosomal RNA (rRNA) precursor to increase succinate dehydrogenase subunit B (SDHB) protein levels. In accordance with SNORA14A downregulation, SDHB protein expression was significantly reduced in HB tissues and cells, accompanied by abnormal accumulation of succinate. Overexpression of SDHB showed antiproliferative and proapoptotic effects and the capacity to induce G2/M phase arrest, while succinate dose-dependently stimulated HB cell growth. Furthermore, the inhibition of SNORA14A in HB malignant phenotypes was mediated by SDHB upregulation-induced reduction of cellular succinate levels. Therefore, the SNORA14A/18 S rRNA/SDHB axis suppresses HB progression by preventing cellular accumulation of the oncometabolite succinate and provides promising prognostic biomarkers and novel therapeutic targets for HB.

12.
Nanoscale ; 14(30): 10844-10850, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35838371

RESUMO

Although various nanomaterials have been designed as intracellular delivery tools, the following aspects have become obstacles to limit their development, like a complex and time-consuming synthesis process, as well as relatively limited application areas (i.e. biosensing or cell imaging). Here, we developed a novel nano-delivery system called "nano-sperm" with low cytotoxicity and high biocompatibility. In this system, we used DNA oligonucleotides as a backbone to synthesize a nanostructure with silver nanoclusters in the head and functional fragments in the tail, which is shaped like a sperm, to achieve dual functions of ultrafast delivery and imaging/therapy. As a model, we analyzed the possibility of the "nano-sperm" carrying DNA with different structures for imaging or survivin-asDNA for tumor therapy. Therefore, this work reports a novel bifunctional high-speed delivery vehicle, which successfully fills the gap in the field of tumor therapy using DNA-templated nanoclusters as a delivery vehicle.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , DNA/química , DNA Antissenso , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/química , Prata/química
14.
Front Immunol ; 13: 828243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711417

RESUMO

Programmed cell death (PCD) plays an important role in the onset and progression of various cancers. The molecular events surrounding the occurrence of abnormally expressed long noncoding RNAs (lncRNAs) leading to colon cancer (CC) have become a focus. We comprehensively evaluated the roles of PCD-related lncRNAs in the clinical management of CC and their immune responses. Therefore, we screened 41 prognostic PCD-related lncRNAs in The Cancer Genome Atlas database using co-expression analysis and assigned patients to groups according to the results of cluster analysis. The immune response and functions of cluster 2 were substantially suppressed, which might explain the poor prognosis in this group. A prognostic model comprising eight PCD-related lncRNAs was developed, and its effectiveness was verified using an external database. High-and low-risk groups had different epigenetic modifications and changes in immune cell infiltration. Patients in the high-risk group were resistant to immunotherapy and various chemotherapeutic drugs. Studies in vitro and in vivo further confirmed a carcinogenic role of the lncRNA U62317.4. Our findings of the prognostic value of PCD-related lncRNAs revealed their important roles in immune response disorders, thus providing valuable insights into the clinical management and molecular mechanisms of CC.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/terapia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
15.
Clin Transl Med ; 12(5): e778, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35522946

RESUMO

BACKGROUND: Solute carrier family 7 member 11 (SLC7A11) is overexpressed in multiple human tumours and functions as a transporter importing cystine for glutathione biosynthesis. It promotes tumour development in part by suppressing ferroptosis, a newly identified form of cell death that plays a pivotal role in the suppression of tumorigenesis. However, the role and underlying mechanisms of SLC7A11-mediated ferroptosis in hepatoblastoma (HB) remain largely unknown. METHODS: Reverse transcription quantitative real-time PCR (RT-qPCR) and western blotting were used to measure SLC7A11 levels. Cell proliferation, colony formation, lipid reactive oxygen species (ROS), MDA concentration, 4-HNE, GSH/GSSG ratio and cell death assays as well as subcutaneous xenograft experiments were used to elucidate the effects of SLC7A11 in HB cell proliferation and ferroptosis. Furthermore, MeRIP-qPCR, dual luciferase reporter, RNA pulldown, RNA immunoprecipitation (RIP) and RACE-PAT assays were performed to elucidate the underlying mechanism through which SLC7A11 was regulated by the m6A modification in HB. RESULTS: SLC7A11 expression was highly upregulated in HB. SLC7A11 upregulation promoted HB cell proliferation in vitro and in vivo, inhibiting HB cell ferroptosis. Mechanistically, SLC7A11 mRNA exhibited abnormal METTL3-mediated m6A modification, which enhanced its stability and expression. IGF2 mRNA-binding protein 1 (IGF2BP1) was identified as the m6A reader of SLC7A11, enhancing SLC7A11 mRNA stability and expression by inhibiting SLC7A11 mRNA deadenylation in an m6A-dependent manner. Moreover, IGF2BP1 was found to block BTG2/CCR4-NOT complex recruitment via competitively binding to PABPC1, thereby suppressing SLC7A11 mRNA deadenylation. CONCLUSIONS: Our findings demonstrated that the METTL3-mediated SLC7A11 m6A modification enhances HB ferroptosis resistance. The METTL3/IGF2BP1/m6A modification promotes SLC7A11 mRNA stability and upregulates its expression by inhibiting the deadenylation process. Our study highlights a critical role of the m6A modification in SLC7A11-mediated ferroptosis, providing a potential strategy for HB therapy through blockade of the m6A-SLC7A11 axis.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Hepatoblastoma , Proteínas Imediatamente Precoces , Neoplasias Hepáticas , Adenosina/análogos & derivados , Adenosina/farmacologia , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Ferroptose/genética , Hepatoblastoma/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Cancer Sci ; 113(7): 2258-2271, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441753

RESUMO

IL-27 is an anti-inflammatory cytokine that triggers enhanced antitumor immunity, particularly cytotoxic T lymphocyte responses. In the present study, we sought to develop IL-27 into a therapeutic adjutant for adoptive T cell therapy using our well-established models. We have found that IL-27 directly improved the survival status and cytotoxicity of adoptive OT-1 CD8+ T cells in vitro and in vivo. Meanwhile, IL-27 treatment programs memory T cell differentiation in CD8+ T cells, characterized by upregulation of genes associated with T cell memory differentiation (T-bet, Eomes, Blimp1, and Ly6C). Additionally, we engineered the adoptive OT-1 CD8+ T cells to deliver IL-27. In mice, the established tumors treated with OT-1 CD8+ T-IL-27 were completely rejected, which demonstrated that IL-27 delivered via tumor antigen-specific T cells enhances adoptive T cells' cancer immunity. To our knowledge, this is the first application of CD8+ T cells as a vehicle to deliver IL-27 to treat tumors. Thus, this study demonstrates IL-27 is a feasible approach for enhancing CD8+ T cells' antitumor immunity and can be used as a therapeutic adjutant for T cell adoptive transfer to treat cancer.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-27 , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Imunoterapia Adotiva , Células T de Memória , Camundongos , Camundongos Endogâmicos C57BL
17.
Clin Transl Med ; 12(2): e747, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35220675

RESUMO

BACKGROUND: Ferroptosis, a form of regulated cell death, is an important topic in the field of cancer research. However, the signalling pathways and factors that sensitise tumour cells to ferroptosis remain elusive. METHODS: We determined the level of ferroptosis in cells by measuring cell death and lipid reactive oxygen species (ROS) production. The expression of RB1-inducible coiled-coil 1 (RB1CC1) and related proteins was analyzed by immunoblotting and immunohistochemistry. Immunofluorescence was used to determine the subcellular localization of RB1CC1. We investigated the mechanism of RB1CC1 nuclear translocation by constructing a series of RB1CC1 variants. To examine the ferroptosis- and RB1CC1-dependent transcriptional program in tumour cells, chromatin immunoprecipitation sequencing was performed. To assess the effect of c-Jun N-terminal kinase (JNK) agonists on strenthening imidazole ketone erastin (IKE) therapy, we constructed cell-derived xenograft mouse models. Mouse models of hepatocellular carcinoma to elucidate the importance of Rb1cc1 in IKE-based therapy of liver tumourigenesis. RESULTS: RB1CC1 is upregulated by lipid ROS and that nuclear translocation of phosphorylation of RB1CC1 at Ser537 was essential for sensitising ferroptosis in tumour cells. Upon ferroptosis induction, nuclear RB1CC1 sharing forkhead box (FOX)-binding motifs recruits elongator acetyltransferase complex subunit 3 (ELP3) to strengthen H4K12Ac histone modifications within enhancers linked to ferroptosis. This also stimulated transcription of ferroptosis-associated genes, such as coiled-coil-helix-coiled-coil-helix domain containing 3 (CHCHD3), which enhanced mitochondrial function to elevate mitochondrial ROS early following induction of ferroptosis. FDA-approved JNK activators reinforced RB1CC1 nuclear translocation and sensitised cells to ferroptosis, which strongly suggested that JNK is upstream of RB1CC1. Nuclear localisation of RB1CC1 correlated with lipid peroxidation in clinical lung cancer specimens. Rb1cc1 was essential for ferroptosis agonists to suppress liver tumourigenesis in mice. CONCLUSIONS: Our findings indicate that RB1CC1-associated signalling sensitises tumour cells to ferroptosis and that targeting RB1CC1 may be beneficial for tumour treatment.


Assuntos
Proteínas Relacionadas à Autofagia/efeitos dos fármacos , Ferroptose/fisiologia , Células Neoplásicas Circulantes/metabolismo , Animais , Proteínas Relacionadas à Autofagia/farmacologia , Modelos Animais de Doenças , Ferroptose/imunologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo
18.
Cell Death Discov ; 8(1): 59, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149670

RESUMO

Yes-associated protein (YAP) activation is crucial for tumor formation and development, and its stability is regulated by ubiquitination. ISGylation is a type of ubiquitination like post-translational modification, whereas whether YAP is ISGylated and how ISGylation influences YAP ubiquitination-related function remains uncovered. In addition, YAP can activate glucose metabolism by activating the hexosamine biosynthesis pathway (HBP) and glycolysis, and generate a large number of intermediates to promote tumor proliferation. However, whether YAP stimulates the pentose phosphate pathway (PPP), another tumor-promoting glucose metabolism pathway, and the relationship between this stimulation and ISGylation needs further investigation. Here, we found that YAP was ISGylated and this ISGylation inhibited YAP ubiquitination, proteasome degradation, interaction with-beta-transducin repeat containing E3 ubiquitin-protein ligase (ßTrCP) to promote YAP stability. However, ISGylation-induced pro-YAP effects were abolished by YAP K497R (K, lysine; R, arginine) mutation, suggesting K497 could be the major YAP ISGylation site. In addition, YAP ISGylation promoted cell viability, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) tumor formation. YAP ISGylation also increased downstream genes transcription, including one of the key enzymes of PPP, 6-phosphogluconolactonase (6PGL). Mechanistically, YAP promoted 6PGL transcription by simultaneously recruiting SMAD family member 2 (SMAD2) and TEA domain transcription factor 4 (TEAD4) binding to the 6PGL promoter to activate PPP. In clinical lung adenocarcinoma (LUAD) specimens, we found that YAP ISGylation degree was positively associated with 6PGL mRNA level, especially in high glucose LUAD tissues compared to low glucose LUAD tissues. Collectively, this study suggested that YAP ISGylation is critical for maintaining its stability and further activation of PPP. Targeting ISGylated YAP might be a new choice for hyperglycemia cancer treatment.

19.
Genes (Basel) ; 12(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34828353

RESUMO

The N6-methyladenosine (m6A) RNA modification can regulate autophagy to modulate the growth and development of tumors, but the mechanism of m6A modification for the regulation of autophagy in hepatocellular carcinoma cells (HCC) remains unclear. In the study, the knockdown of the Wilms' tumor 1-associating protein (WTAP) was made in HCC to study the correlation between m6A modification and autophagy. A fluorescent confocal microscopy analysis showed that the knockdown of WTAP could facilitate the autophagy of HCC. A Western blot analysis showed that the level of p-AMPK was decreased in WTAP-knockdown HCC cells. Additionally, LKB1, the upstream kinase of AMPK, was regulated by WTAP and it could mediate the phosphorylation of AMPK in an m6A-dependent manner. Further studies revealed that the knockdown of WTAP could reduce the level of LKB1 mRNA with m6A. This could result in the increased stability of LKB1 mRNA to promote its expression. The knockdown of WTAP could upregulate the level of autophagy and inhibit HCC proliferation. However, the overexpression of WTAP could resist autophagic cell death.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/análogos & derivados , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Neoplasias Hepáticas/genética , Fatores de Processamento de RNA/genética , Regulação para Cima , Adenosina/metabolismo , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Transdução de Sinais
20.
Nanoscale Horiz ; 6(12): 979-986, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34542134

RESUMO

Treating cancer with high efficacy while eliminating side effects has been the holy grail of cancer research. The challenge, however, arises from the similarity in molecular traits of cancer cells and normal cells because truly specific cancer biomarkers are extremely scarce if not entirely unavailable. Often, biomarkers serving as the therapeutic targets are present on both healthy cells and cancers, but at different levels, causing not only off-target side effects but also on-target side effects. This work has reported a new concept of cancer treatment, spatial confinement of cells to inhibit cell migration and invasion, which directly addresses the defining trait of cancer on the cellular level, unchecked division. Using large sized graphene oxide (LS-GO), cell surfaces can be patched. Unlike conventional chemotherapy, this spatial confinement does not affect the viability of non-dividing cells but significantly inhibits tumor cell migration and invasion in vitro and in vivo. This new concept has the potential to become a general therapeutic for many cancer types with reduced side effects.


Assuntos
Grafite , Neoplasias , Linhagem Celular Tumoral , Movimento Celular , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA