Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Research (Wash D C) ; 7: 0315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357697

RESUMO

The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-ß-D-manno-heptose (ADP-Hep) recognition. The phase separation of TIFA is primarily driven by ALPK1, the pT9-FHA domain, and the intrinsically disordered region segment. Simultaneously, TRAF6 exhibits phase separation during ADP-Hep-induced inflammation, a phenomenon observed consistently across various inflammatory signal pathways. Moreover, TRAF6 is recruited within the TIFA condensates, facilitating lysine (K) 63-linked polyubiquitin chain synthesis. The subsequent recruitment, enrichment, and activation of downstream effectors within these condensates contribute to robust inflammatory signal transduction. Utilizing a novel chemical probe (compound 22), our analysis demonstrates that the activation of the ALPK1-TIFA-TRAF6 signaling pathway in response to small molecules necessitates the phase separation of TIFA. In summary, our findings reveal TIFA as a sensor for upstream signals, initiating the LLPS of itself and downstream proteins. This process results in the formation of membraneless condensates within the ALPK1-TIFA-TRAF6 pathway, suggesting potential applications in therapeutic biotechnology development.

2.
Semin Cancer Biol ; 74: 92-104, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33962020

RESUMO

Cancer therapeutic strategies include surgeries, radiotherapy, chemotherapy, targeted therapy and immunotherapies. However, current cancer treatment still faces challenges such as postoperative residuals, postoperative recurrence, chemoradiotherapy resistance and lack of drugs with high specificity, due to the complexity of the cancer environment. Extracellular vesicles (EVs) are lipid-capsuled membrane vesicles secreted from cells, communicating vital messages between cells and regarding function in tumorigenesis and metastasis. Investigation of compositions and functions of EVs may open unprecedented, promising avenues for cancer therapeutics. This review brings new perspectives from both researchers and clinicians in the EV field, emphasizing the ties between basic research and ongoing clinical trials. In sum, our review summarizes the roles EVs play in cancer therapy, ranging from mechanisms to applications in cancer treatment. In particular, it focuses on their therapeutic potential with an eye toward clinical relevance.


Assuntos
Vesículas Extracelulares , Neoplasias/terapia , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos
3.
Sci Adv ; 5(7): eaav1564, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355328

RESUMO

Endosomal Toll-like receptors (TLRs) mediate intracellular innate immunity via the recognition of DNA and RNA sequences. Recent work has reported a role for extracellular vesicles (EVs), known to transfer various nucleic acids, in uptake of TLR-activating molecules, raising speculation about possible roles of EVs in innate immune surveillance. Whether EV-mediated uptake is a general mechanism, however, was unresolved; and the molecular machinery that might be involved was unknown. We show that, when macrophages are stimulated with the TLR9 agonist CpG oligodeoxynucleotides (ODN), the secreted EVs transport ODN into naïve macrophages and induce the release of chemokine TNF-α. In addition, these EVs transfer Cdc42 into recipient cells, resulting in further enhancement of their cellular uptake. Transport of ODN and Cdc42 from TLR9-activated macrophages to naïve cells via EVs exerts synergetic effects in propagation of the intracellular immune response, suggesting a general mechanism of EV-mediated uptake of pathogen-associated molecular patterns.


Assuntos
Vesículas Extracelulares/genética , Receptor Toll-Like 9/genética , Fator de Necrose Tumoral alfa/genética , Proteína cdc42 de Ligação ao GTP/genética , Linhagem Celular , DNA/genética , Endossomos/genética , Endossomos/imunologia , Vesículas Extracelulares/imunologia , Regulação da Expressão Gênica/genética , Humanos , Imunidade Celular , Macrófagos/imunologia , Nanopartículas/química , Oligodesoxirribonucleotídeos/genética , Proteômica , RNA/genética , Proteína cdc42 de Ligação ao GTP/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA