Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591843

RESUMO

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fator B de Crescimento do Endotélio Vascular , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Imunoterapia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
3.
Cell Death Dis ; 12(11): 968, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671022

RESUMO

Gastric cancer (GC) ranks the third among global cancer-related mortality, especially in East Asia. Angiogenesis plays an important role in promoting tumor progression, and clinical trials have demonstrated that anti-angiogenesis therapy is effective in GC management. Natriuretic peptide receptor A (NPRA) functions significantly in promoting GC development and progression. Whether NPRA can promote angiogenesis of GC remains unclear. Tumor samples collection and immunohistochemical experiment showed that the expression of NPRA was positively correlated with the expression of CD31 and vessel density. In vivo and in vitro analysis showed that NPRA could promote GC-associated angiogenesis and tumor metastasis. Results of Co-IP/MS showed that NPRA could prevent HIF-1α from being degraded by binding to HIF-1α. Protection of HIF-1α improved VEGF levels and thus promoted angiogenesis. In summary, NPRA protected HIF-1α from proteolysis by binding to HIF-1α, increased the expression of HIF-1α, and promoted GC angiogenesis. This study has discovered a new mechanism for NPRA to promote gastric cancer development and a new regulatory mechanism for HIF-1α.


Assuntos
Neovascularização Patológica/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Neoplasias Gástricas/irrigação sanguínea , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Nus , Modelos Biológicos , Estadiamento de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Prognóstico , Proteólise , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Exp Clin Cancer Res ; 40(1): 103, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731207

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have emerged as a new subclass of regulatory RNAs that play critical roles in various cancers. Cancer stem cells (CSCs), a small subset of cancer cells, are believed to possess the capacities to initiate tumorigenesis and promote progression. Although accumulating evidence has suggested that cells with CSC-like properties are crucial for the malignancy of gastric cancer (GC), it remains unclear whether circRNAs are related to the acquisition of CSC-like properties in GC. METHODS: CircFAM73A expression was analyzed by GEO datasets and verified in GC samples. The roles of circFAM73A in GC cell proliferation, migration, cisplatin resistance, and CSC-like properties were determined by a series of functional experiments both in vitro and in vivo. RNA pulldown was used to explore the miRNAs and proteins binding to circFAM73A. Bioinformatic analysis and experimental verification confirmed the downstream targets of circFAM73A. The regulation of circFAM73A by HMGA2 was verified by ChIP and RIP assays. RESULTS: Elevated circFAM73A expression was confirmed in GC tissues, and higher circFAM73A predicted poor prognosis in GC patients. The upregulation of circFAM73A enhanced CSC-like properties in GC, thus facilitating cell proliferation, migration, and cisplatin resistance. Mechanistically, circFAM73A promoted GC malignancy by regulating miR-490-3p/HMGA2 in a positive feedback loop and recruiting HNRNPK to facilitate ß-catenin stabilization. Moreover, HMGA2 further enhanced E2F1 and HNRNPL activity, which in turn promoted circFAM73A expression. CONCLUSIONS: Our work demonstrates the crucial role of circFAM73A in the CSC-like properties of GC and uncovers a positive feedback loop in circFAM73A regulation that leads to the progression of gastric cancer, which may provide new insights into circRNA-based diagnostic and therapeutic strategies.


Assuntos
Proteína HMGA2/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Circular/metabolismo , Neoplasias Gástricas/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Retroalimentação Fisiológica , Feminino , Proteína HMGA2/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , RNA Circular/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima
5.
J Exp Clin Cancer Res ; 40(1): 6, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33397440

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common malignant tumors worldwide. Currently, the overall survival rate of GC is still unsatisfactory despite progress in diagnosis and treatment. Therefore, studying the molecular mechanisms involved in GC is vital for diagnosis and treatment. CircRNAs, a type of noncoding RNA, have been proven to act as miRNA sponges that can widely regulate various cancers. By this mechanism, circRNA can regulate tumors at the genetic level by releasing miRNA from inhibiting its target genes. The WNT2/ß-Catenin regulatory pathway is one of the canonical signaling pathways in tumors. It can not only promote the development of tumors but also provide energy for tumor growth through cell metabolism (such as glutamine metabolism). METHODS: Through RNA sequencing, we found that hsa_circ_0008259 (circLMO7) was highly expressed in GC tissues. After verifying the circular characteristics of circLMO7, we determined the downstream miRNA (miR-30a-3p) of circLMO7 by RNA pull-down and luciferase reporter assays. We verified the effect of circLMO7 and miR-30a-3p on GC cells through a series of functional experiments, including colony formation, 5-ethynyl-2'-deoxyuridine and Transwell assays. Through Western blot and immunofluorescence analyses, we found that WNT2 was the downstream target gene of miR-30a-3p and further confirmed that the circLMO7-miR-30a-3p-WNT2 axis could promote the development of GC. In addition, measurement of related metabolites confirmed that this axis could also provide energy for the growth of GC cells through glutamine metabolism. We found that circLMO7 could promote the growth and metastasis of GC in vivo by the establishment of nude mouse models. Finally, we also demonstrated that HNRNPL could bind to the flanking introns of the circLMO7 exons to promote circLMO7 cyclization. RESULTS: CircLMO7 acted as a miR-30a-3p sponge affecting the WNT2/ß-Catenin pathway to promote the proliferation, migration and invasion of GC cells. Moreover, animal results also showed that circLMO7 could promote GC growth and metastasis in vivo. CircLMO7 could also affect the glutamine metabolism of GC cells through the WNT2/ß-Catenin pathway to promote its malignant biological function. In addition, we proved that HNRNPL could promote the self-cyclization of circLMO7. CONCLUSIONS: CircLMO7 promotes the development of GC by releasing the inhibitory effect of miR-30a-3p on its target gene WNT2.


Assuntos
RNA Circular/metabolismo , Neoplasias Gástricas/genética , Proteína Wnt2/metabolismo , beta Catenina/metabolismo , Animais , Progressão da Doença , Humanos , Camundongos , MicroRNAs , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida
6.
J Gastroenterol ; 56(2): 125-138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33155080

RESUMO

BACKGROUND: Circular RNAs (circRNAs) act as vital regulators of gene expression in a variety of cancers. However, the role of circRNAs in gastric cancer (GC) remains largely unexplored. Herein, we identified that circTMEM87A sponges miR-142-5p to promote GC progression through up-regulating ULK1 expression. METHODS: The expression of circTMEM87A in GC was determined by RNA sequencing and quantitative real-time PCR (qRT-PCR). The effects of knockdown or exogenous expression of circTMEM87A on GC cell phenotypes were evaluated both in vitro and in vivo. The interacting miRNA of circTMEM87A was predicted by bioinformatics and confirmed by RNA pull-down, dual-luciferase reporter assay and fluorescence in situ hybridization (FISH). The mechanism by which circTMEM87A/miR-142-5p/ULK1 axis promotes GC was determined by western blot, GFP/mRFP-LC3 puncta analysis, transmission electron microscope (TEM). RESULTS: CircTMEM87A was dramatically elevated in GC tissues and cell lines, and high circTMEM87A expression was closely correlated with poor prognosis of GC patients. Knockdown of circTMEM87A suppressed cell growth, migration, invasion and induced apoptosis in vitro, as well as inhibited GC tumorigenicity and lung metastasis potential in vivo. Meanwhile, circTMEM87A overexpression had the opposite effects. Furthermore, we demonstrated that circTMEM87A could act as a sponge of miR-142-5p to regulate ULK1 expression and GC progression. CONCLUSIONS: Our findings suggest that circTMEM87A functions as an oncogene through the miR-142-5p/ULK1 axis in GC. CircTMEM87A might be a prognostic biomarker as well as a promising therapeutic target for GC.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , RNA Circular/farmacologia , Neoplasias Gástricas/etiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/análise , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/análise , MicroRNAs/genética , RNA Circular/uso terapêutico , Neoplasias Gástricas/fisiopatologia
7.
Ann Transl Med ; 8(20): 1304, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209884

RESUMO

BACKGROUND: Previous studies have confirmed the antitumor effects of cimetidine, while the therapeutic targets and the mechanisms are not yet fully understood. We previously reported the protumoral role of endogenous FOXP3 in gastric cancer (GC), but whether cimetidine plays an antitumor role by targeting FOXP3 is still unknown. METHODS: A series of assays were used to examine the role of cimetidine on the malignant behaviors and the expression of endogenous FOXP3 in GC cells. The role of cimetidine on ligase E3-STUB1and the role of STUB1 on FOXP3 level were examined, with the signaling pathway involved in these processes also being explored. RESULTS: Cimetidine inhibited the malignant behaviors of GC cells, and led to the ubiquitination/degradation of FOXP3. Moreover, cimetidine promoted STUB1 expression, STUB1 knockdown rescued the decline of FOXP3 in cimetidine-treated GC cells, and reduced the turnover effect of cimetidine on GC cells, but had minimal effect in untreated cells. Immunoprecipitation (IP) assay confirmed the formation of the STUB1-FOXP3 complex in cimetidine-treated GC cells. Furthermore, Cimetidine promoted STUB1 expression by activating PI3K/Akt pathway, and the inhibition of PI3K/Akt pathway rescued the decline of FOXP3 by suppressing the upregulation of STUB1. CONCLUSIONS: Cimetidine suppressed GC development by promoting STUB1-mediated ubiquitination/degradation of endogenous FOXP3 through the activation of the PI3K/Akt pathway.

8.
J Exp Clin Cancer Res ; 39(1): 246, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33198772

RESUMO

BACKGROUND: Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. METHODS: RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). RESULTS: CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. CONCLUSIONS: CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


Assuntos
Cisplatino/farmacologia , Proteínas de Membrana/genética , MicroRNAs/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , RNA Circular/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Transfecção
9.
Cancer Med ; 9(19): 7231-7243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32780563

RESUMO

Gastric cancer (GC) is one of the most deadly malignancies at global scale, and is particularly common in eastern Asia. MicroRNA-5683 (miR-5683) was confirmed to be downregulated in GC by analyzing data from the Cancer Genome Atlas. We packaged miR-5683-mimics and miR-5683-inhibitors into lentivirus vectors and transfected them into GC cells. MiR-5683 expression and possible target genes were detected by employing quantitative real-time polymerase chain reaction. In vitro, cell proliferation and apoptosis were analyzed using CCK-8, colony formation assay, and flow cytometric assay. We verified the direct interaction between miR-5683 and the possible downstream target gene pyruvate dehydrogenase kinase 4 (PDK4) through luciferase reporter assay. The role of miR-5683 in vivo was explored by injecting stably transfected GC cells subcutaneously into nude mice. Here we show that miR-5683 was downregulated in GC and the decreased level of miR-5683 enhances GC cell proliferation and impairs apoptosis. Tumor oncogene PDK4, which is associated with GC overall survival and disease-free survival, has been identified as the target gene of miR-5683. Besides, we demonstrate that the inhibition of miR-5683 promotes glycolysis by upregulating the PDK4 expression, thus leading to GC progression. Our study determines that miR-5683 represses GC glycolysis and progression through targeting PDK4. MiR-5683 overexpression may thus become a new treatment strategy for GC.


Assuntos
Proliferação de Células , Glicólise , MicroRNAs/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Neoplasias Gástricas/enzimologia , Animais , Apoptose , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Carga Tumoral
10.
Cell Death Dis ; 11(7): 592, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719361

RESUMO

MicroRNAs are a class of small non-coding RNAs which act as oncogenes or tumor suppressors through targeting specific mRNAs. Colorectal cancer (CRC) is one of the most common malignancies worldwide. MiR-3622a-3p is found to be decreased in colorectal cancer (CRC) by analyzing data from TCGA database and there are few reports about the role of miR-3622a-3p in cancers. Our research aimed to explore the effects of miR-3622a-3p on CRC. MiR-3622a-3p was found to be down-regulated in CRC tissues and cells by qRT-PCR. The effect of miR-3622a-3p on proliferation, apoptosis, cell cycle, migration and invasion of CRC cells were investigated by a serious of biological function assays and the results revealed that miR-3622a-3p could inhibit the malignant biological properties of CRC. We performed dual luciferase assay, RNA immunoprecipitation (RIP) assay and pull-down assay to confirm the interaction between miR-3622a-3p and spalt-like transcription factor 4 (SALL4). Western blot was carried out to determine the effects of miR-3622a-3p and SALL4 on stemness features and EMT. We found that miR-3622a-3p suppressed stemness features and EMT of CRC cells by SALL4 mRNA degradation. MiR-3622a-3p could inhibit CRC cell proliferation and metastasis in vivo with tumor xenograft model and in vivo metastasis model. The CRC organoid model was constructed with fresh CRC tissues and the growth of organoids was suppressed by miR-3622a-3p. Taken together, the results of our study indicate miR-3622a-3p exerts antioncogenic role in CRC by downregulation of SALL4. The research on miR-3622a-3p might provide a new insight into treatment of CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Genes Supressores de Tumor , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/metabolismo , Apoptose/genética , Sequência de Bases , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Organoides/patologia , Fatores de Transcrição/genética , Regulação para Cima/genética , Via de Sinalização Wnt/genética
11.
Scand J Gastroenterol ; 55(6): 687-693, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32449434

RESUMO

Objectives: The PHD Finger Protein 19 (PHF19), as a sub-component of polycomb repressive complex 2 (PRC2), has been identified to be associated with various biological processes. Aberrant expression of PHF19 has implicated in several cancer types. This study aims to investigate its function and clinical significance in gastric cancer for the first time.Methods: The expression of PHF19 was evaluated by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. PHF19 was silenced by small interference RNAs and lentiviral particles in gastric cancer cells. Then cell growth was measured by CCK-8 assays, colony formation and in a mouse model. Transwell and wound healing assays were performed to detect cell migration. Western blot analysis was used to explore the downstream signaling factors in PHF19-silenced cells, xenograft tumors and gastric cancer samples.Results: PHF19 was frequently upregulated in gastric cancer tissues compared with adjacent normal stomach tissues and this upregulation was correlated with tumor cell differentiation and poor outcome of gastric cancer patients. Functionally, the silencing of PHF19 in gastric cancer cells led to decreased cell growth and migration. Stable knockdown of PHF19 inhibited the tumorigenicity of gastric cancer cells in nude mice model. Western blot results demonstrated that phosphorylated AKT and ERK were reduced upon PHF19 downregulation, implying the two signaling pathways possibly mediate the oncogenic roles of PHF19.Conclusions: We identified PHF19 as an oncogene candidate and provided a new potential drug target for gastric cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Cell Physiol ; 235(12): 9388-9398, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32342525

RESUMO

Kinesin family member 15 (KIF15) is a member of the kinesin superfamily of proteins, which promotes cell mitosis, participates in the transport of intracellular materials, and helps structural assembly and cell signaling pathways transduction. However, its biological role and molecular mechanisms of action in the development of gastric cancer (GC) remain unclear. In the present study, an integrated analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus database, and Kaplan-Meier plotter database was performed to predict the expression and prognostic value of KIF15 in GC patients. Detection of KIF15 expression in GC cells and tissues was performed by a quantitative polymerase chain reaction. In vitro cell proliferation, viability, colony formation ability and flow cytometry assays, and in vivo tumorigenicity assay, were performed to evaluate the effects of KIF15 knockdown on GC cell phenotype. It was demonstrated that the expression of KIF15 messenger RNA in GC tissues was significantly higher compared with that in adjacent tissues, and was closely associated with larger tumor size and poor patient prognosis. In addition, functional studies demonstrated that, due to the increase in reactive oxygen species (ROS) generation, the interference with the expression of KIF15 not only decreased cell proliferation but also increased cell apoptosis and induced cell cycle arrest. ROS-mediated activation of c-Jun N-terminal kinase/c-Jun signaling reduced cell proliferation by regulating the GC cell cycle and increasing apoptosis. Taken together, the results of the present study indicate that KIF15 is an oncoprotein contributing to GC progression, and is expected to help identify novel biomarkers and treatment targets in GC.


Assuntos
Apoptose/genética , Cinesinas/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Biomarcadores Tumorais/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Gástricas/genética
13.
Artif Cells Nanomed Biotechnol ; 48(1): 345-352, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31899964

RESUMO

Prokineticin 2 (PK2) was reported to be decreased in the hearts of end-state heart failure patients. Our study aimed to explore the effects of PK2 on hypoxia/reoxygenation (H/R) injury and the underlying mechanism. H9c2 cardiomyocytes were treated with 5 nM PK2 in the presence or absence of 5 mM dual phosphatidylinositol 3-kinase (PI3K)/the mammalian target of rapamycin (mTOR) inhibitor (BEZ235) for 24 h and then subjected to H/R treatment. Cell viability and lactate dehydrogenase (LDH) release were evaluated by CCK-8 and LDH release assays, respectively. Apoptosis was determined by flow cytometry analysis. Oxidative stress was assessed by measuring superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) content. Results showed that H/R treatment decreased PK2 expression and inactivated the Akt/mTOR pathway in H9c2 cardiomyocytes. PK2 treatment activated the Akt/mTOR pathway in H/R-exposed H9c2 cardiomyocytes. H/R stimulation suppressed cell viability, increased LDH release, induced apoptosis and oxidative stress in H9c2 cardiomyocytes, while these effects were neutralised by treatment with PK2. However, the inhibitory effects of PK2 on H/R-induced injury in H9c2 cardiomyocytes were abolished by the addition of BEZ235. In conclusion, PK2 relieved H/R-induced injury in H9c2 cardiomyocytes by activation of the Akt/mTOR pathway.


Assuntos
Hormônios Gastrointestinais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Hormônios Gastrointestinais/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Neuropeptídeos/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Serina-Treonina Quinases TOR/genética
14.
Cancer Lett ; 482: 112-125, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31733289

RESUMO

The development and progression of hepatocellular carcinoma (HCC) is associated with the presence of cancer stem cells (CSCs). In the present study, kinesin family member 15 (KIF15) expression was shown to be overexpressed in HCC tissues, cell lines, and CSCs. Patients with HCC with high KIF15 expression had shortened overall survival (OS) and high recurrence probability. Downregulation of KIF15 in vitro as well as in HCC organoids resulted in a significant reduction in sphere formation and expression of stemness-related genes. KIF15 downregulation in human HCC xenograft models delayed tumor initiation, growth, and metastasis. KIF15 was also demonstrated to interact with phosphoglycerate dehydrogenase (PHGDH) and inhibit proteasomal degradation of PHGDH, thus promoting CSC phenotype and malignancy via PHGDH-mediated intracellular reactive oxygen species (ROS) imbalance in HCC. Moreover, AAA nuclear coregulator cancer-associated protein (ANCCA) upregulation acts as a key mediator in KIF15 expression upregulation in HCC. Conclusion: In this study, we found that KIF15 promotes the CSC phenotype and malignancy via PHGDH-mediated ROS imbalance in HCC. These findings highlight potential therapeutic targets for HCC.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Masculino , Camundongos , Metástase Neoplásica , Recidiva Local de Neoplasia , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Análise de Sobrevida
15.
Onco Targets Ther ; 12: 10703-10715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827328

RESUMO

PURPOSE: The oncogene of wild type neuroblastoma RAS viral oncogene homolog (NRAS) has been found to involve in the tumorigenesis of cancers. However, the role of NRAS in retinoblastoma (RB) progression remains largely unknown. METHODS: The expression levels of NRAS, miR-183-5p and small nucleolar RNA host gene 16 (SNHG16) were measured using quantitative real-time polymerase chain reaction assay or Western blot assay, respectively. Cell proliferation and apoptosis were analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or flow cytometry, respectively. Transwell assay was used to determine cell migration and invasion abilities. The interaction between miR-183-5p and NRAS or SNHG16 was analyzed using bioinformatics analysis and dual-luciferase reporter assay. RESULTS: NRAS was elevated in RB tissues and cell lines, knockdown of NRAS could inhibit proliferation, migration and invasion but induced apoptosis in vitro and suppressed tumor growth in vivo. NRAS was confirmed to be a target of miR-183-5p and was negatively regulated by miR-183-5p in RB cells. Moreover, overexpressed NRAS reversed miR-183-5p mediated inhibition on RB cell progression. Besides that, SNHG16 directly interacted with miR-183-5p and reduced miR-183-5p expression in RB cells. The suppression of RB cell progression induced by SNHG16 silencing could be partially attenuated by the inhibition of miR-183-5p. Besides that, SNHG16 could regulate NRAS expression through competitively binding to miR-183-5p in RB cells. CONCLUSION: NRAS functioned as an oncogene to contribute to RB progression by SNHG16/miR-183-5p/NRAS regulatory network, indicating a novel and promising therapeutic target for RB.

16.
Oncogene ; 38(44): 6985-7001, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409903

RESUMO

The prognosis after curative resection of gastric cancer (GC) remains unsatisfactory, and thus, the development of treatments involving alternative molecular and genetic targets is critical. Circular RNAs (circRNAs), which are newly discovered molecules with key roles in the non-coding RNA network, have been identified as critical regulators in various cancers. Here, we aimed to determine the circRNA expression profile and to investigate the functional and prognostic significance of circRNA in GC. Using next-generation sequencing profiling, we first characterized an abundant circRNA in GC, hsa_circ_0008549, derived from the OSBPL10 gene and named it circOSBPL10. The expression of circOSBPL10 was found to be upregulated in GC tissues by quantitative RT-PCR, and silencing of circOSBPL10 significantly inhibited GC cell growth, migration, and invasion in multiple experiments. We further confirmed that miR-136-5p is a downstream target of circOSBPL10 using RNA pull-down and luciferase reporter assays. Rescue experiments confirmed that circOSBPL10 regulates biological functions in GC cells via a circOSBPL10-miR-136-5p-WNT2 axis. In vivo experiments showed that circOSBPL10 promotes tumor growth and metastasis in mice. Furthermore, the level of circOSBPL10 was observed to be a prognostic marker of the overall survival and disease-free survival of patients with GC. Taken together, our findings reveal that circOSBPL10 may serve as a new proliferation factor and prognostic marker in GC.


Assuntos
Biomarcadores Tumorais/genética , RNA Circular/genética , Receptores de Esteroides/genética , Neoplasias Gástricas/genética , Proliferação de Células/fisiologia , Humanos , Metástase Neoplásica , Prognóstico , Receptores de Esteroides/fisiologia , Neoplasias Gástricas/patologia
17.
Biochem Biophys Res Commun ; 514(3): 777-784, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31079921

RESUMO

Ultra-violet radiation (UVR) can induce significant oxidative injury to human lens epithelial cells (HLECs). Sirtuin 6 (SIRT6) is shown to directly bind to Nrf2, essential for Nrf2 signaling activation. In the present study, we show that microRNA-4532 (miR-4532) targets SIRT6 to regulate Nrf2 signaling in HLECs. Ectopic overexpression of miR-4532 in HLECs decreased SIRT6 3'-UTR activity, causing SIRT6 downregulation and Nrf2 signaling inhibition. Conversely, miR-4532 inhibition, by a lentiviral construct, enhanced SIRT6 3'-UTR activity, SIRT6 expression and Nrf2 signaling activation. Functional studies show that UVR-induced cytotoxicity and apoptosis in HLECs were potentiated by miR-4532 overexpression, Nrf2 depletion or SIRT6 shRNA. Conversely, miR-4532 inhibition or ectopic SIRT6 overexpression attenuated UVR-induced oxidative injury in HLECs. Importantly, miR-4532 overexpression or inhibition was ineffective in SIRT6-KO or Nrf2-KO HLECs. Taken together, the results show that inhibition of miR-4532 protects HLECs from UVR-induced oxidative injury via activation of SIRT6-Nrf2 pathway. Targeting the miR-4532-SIRT6-Nrf2 pathway could be a novel strategy to protect HLECs from UVR and possible other oxidative stresses.


Assuntos
Citoproteção , Células Epiteliais/patologia , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos da radiação , Transdução de Sinais , Sirtuínas/metabolismo , Raios Ultravioleta , Sequência de Bases , Citoproteção/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Humanos , MicroRNAs/genética , Transdução de Sinais/efeitos da radiação
18.
Mol Cancer ; 18(1): 71, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30927924

RESUMO

BACKGROUND: Cisplatin (CDDP) treatment is one of the most predominant chemotherapeutic strategies for patients with gastric cancer (GC). A better understanding of the mechanisms of CDDP resistance can greatly improve therapeutic efficacy in patients with GC. Circular RNAs (circRNAs) are a class of noncoding RNAs whose functions are related to the pathogenesis of cancer, but, in CDDP resistance of GC remains unknown. METHODS: circAKT3 (hsa_circ_0000199, a circRNA originating from exons 8, 9, 10, and 11 of the AKT3 gene) was identified by RNA sequencing and verified by quantitative reverse transcription PCR. The role of circAKT3 in CDDP resistance in GC was assessed both in vitro and in vivo. Luciferase reporter assay, biotin-coupled RNA pull-down and fluorescence in situ hybridization (FISH) were conducted to evaluate the interaction between circAKT3 and miR-198. Functional experiments were measured by western blotting, a cytotoxicity assay, clonogenic assay and flow cytometry. RESULTS: The expression of circAKT3 was higher in CDDP-resistant GC tissues and cells than in CDDP-sensitive samples. The upregulation of circAKT3 in GC patients receiving CDDP therapy was significantly associated with aggressive characteristics and was an independent risk factor for disease-free survival (DFS). Our data indicated that circAKT3 promotes DNA damage repair and inhibits the apoptosis of GC cells in vivo and in vitro. Mechanistically, we verified that circAKT3 could promote PIK3R1 expression by sponging miR-198. CONCLUSIONS: circAKT3 plays an important role in the resistance of GC to CDDP. Thus, our results highlight the potential of circAKT3 as a therapeutic target for GC patients receiving CDDP therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , RNA/genética , Neoplasias Gástricas/tratamento farmacológico , Regulação para Cima , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cisplatino/administração & dosagem , Classe Ia de Fosfatidilinositol 3-Quinase , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , RNA Circular , Análise de Sequência de RNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Prolif ; 52(3): e12567, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30883979

RESUMO

OBJECTIVES: It has been accounted that miR-664a-3p has different functions in several malignancies; however, the precise role and underlying mechanism in gastric cancer have not been elucidated. Our study aims to explore the function of miR-664a-3p on the progression of gastric cancer (GC). METHODS: qRT-PCR was applied to detect the expression of miR-664a-3p in GC tissues and cells. The functions of miR-664a-3p on GC in vitro were examined by cell proliferation assay, and transwell assay. Related proteins of epithelial-mesenchymal transition (EMT) and signal pathway were evaluated by Western blot and immunofluorescence analysis. The bioinformatic, dual-luciferase assay or ChIP assay were employed to identify the interaction between miR-664a-3p and its target gene or Foxp3. The effects in vivo were investigated through a mouse tumorigenicity model. RESULTS: miR-664a-3p was frequently upregulated in GC tissues and cells. Elevated expression of miR-664a-3p significantly promoted proliferation and invasion in vitro and in vivo. MOB1A was confirmed to be a target of miR-664a-3p and restoration of MOB1A attenuated the effects of miR-664a-3p. A series of investigations indicated that miR-664a-3p contributed to EMT process and inactivated the Hippo pathway by downregulating MOB1A. CONCLUSION: Taken together, we revealed that miR-664a-3p functions as an oncogene by targeting Hippo pathway in the development of gastric cancer.


Assuntos
MicroRNAs/genética , Oncogenes , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Xenoenxertos , Via de Sinalização Hippo , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Transdução de Sinais , Neoplasias Gástricas/patologia , Regulação para Cima
20.
Cancer Lett ; 449: 226-236, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779944

RESUMO

Increasing evidence indicates that microRNAs (miRNAs) play an important role in various tumors by regulating downstream target genes and diverse signaling pathways. Herein, we confirmed miR-1265 expression in gastric cancer (GC) using the Cancer Genome Atlas (TCGA) database and assessed the level of miR-1265 expression in clinical specimens and cell lines. We found that miR-1265 expression was negatively correlated with tumor size. Further functional analysis revealed that miR-1265 suppresses cellular proliferation and autophagy while inducing apoptosis in GC cells. A luciferase reporter assay was used to identify an miR-1265 targeted gene, calcium binding protein 39 (CAB39), which is an essential upstream regulator in the AMPK-mTOR signaling pathway. Upregulation or downregulation of CAB39 expression reversed the effects of miR-1265 overexpression or inhibition, respectively. Notably, the knockdown of autophagy-related gene 12 (ATG12) impaired the effects of miR-1265 inhibition or CAB39 overexpression in GC. MiR-1265 also suppressed the growth of GC cells in vivo and that of human gastric organoids. Altogether, our results show that miR-1265 suppresses GC progression and oncogenic autophagy by reducing CAB39 expression and regulating the AMPK-mTOR signaling pathway. Therefore, miR-1265 may represent a potential therapeutic target for GC.


Assuntos
Apoptose , Autofagia , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , MicroRNAs/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA