Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Hazard Mater ; 476: 134945, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38905984

RESUMO

The escalating introduction of pesticides/veterinary drugs into the environment has necessitated a rapid evaluation of their potential risks to ecosystems and human health. The developmental toxicity of pesticides/veterinary drugs was less explored, and much less the large-scale predictions for untested pesticides, veterinary drugs and bio-pesticides. Alternative methods like quantitative structure-activity relationship (QSAR) are promising because their potential to ensure the sustainable and safe use of these chemicals. We collected 133 pesticides and veterinary drugs with half-maximal active concentration (AC50) as the zebrafish embryo developmental toxicity endpoint. The QSAR model development adhered to rigorous OECD principles, ensuring that the model possessed good internal robustness (R2 > 0.6 and QLOO2 > 0.6) and external predictivity (Rtest2 > 0.7, QFn2 >0.7, and CCCtest > 0.85). To further enhance the predictive performance of the model, a quantitative read-across structure-activity relationship (q-RASAR) model was established using the combined set of RASAR and 2D descriptors. Mechanistic interpretation revealed that dipole moment, the presence of C-O fragment at 10 topological distance, molecular size, lipophilicity, and Euclidean distance (ED)-based RA function were main factors influencing toxicity. For the first time, the established QSAR and q-RASAR models were combined to prioritize the developmental toxicity of a vast array of true external compounds (pesticides/veterinary drugs/bio-pesticides) lacking experimental values. The prediction reliability of each query molecule was evaluated by leverage approach and prediction reliability indicator. Overall, the dual computational toxicology models can inform decision-making and guide the design of new pesticides/veterinary drugs with improved safety profiles.

2.
Int J Biol Macromol ; 274(Pt 2): 133404, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925197

RESUMO

As a clinical anti-glioma agent, the therapeutic effect of carmustine (BCNU) was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and the blood-brain barrier (BBB). To overcome these obstacles, we synthesized a BCNU-loaded hypoxia/esterase dual stimulus-activated nanomicelle, abbreviated as T80-HACB/BCNU NPs. In this nano-system, Tween 80 acts as the functional coating on the surface of the micelle to facilitate transport across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hypoxia-sensitive AGT inhibitors (O6-azobenzyloxycarbonyl group) via an esterase-activated ester bond. The obtained T80-HACB/BCNU NPs had an average particle size of 232.10 ± 10.66 nm, the zeta potential of -18.13 ± 0.91 mV, and it showed high drug loading capacity, eximious biocompatibility and dual activation of hypoxia/esterase drug release behavior. The obtained T80-HACB/BCNU NPs showed enhanced cytotoxicity against hypoxic T98G and SF763 cells with IC50 at 132.2 µM and 133.1 µM, respectively. T80 modification improved the transportation of the micelle across an in vitro BBB model. The transport rate of the T80-HACB/Cou6 NPs group was 12.37 %, which was 7.6-fold (p<0.001) higher than the micelle without T80 modification. T80-HACB/BCNU NPs will contribute to the development of novel CENUs chemotherapies with high efficacy.

3.
ACS Pharmacol Transl Sci ; 7(5): 1518-1532, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751635

RESUMO

Tumor resistance seriously hinders the clinical application of chloroethylnitrosoureas (CENUs), such as O6-methylguanine-DNA methylguanine (MGMT), which can repair O6-alkyl lesions, thereby inhibiting the formation of cytotoxic DNA interstrand cross-links (ICLs). Metabolic differences between tumor and normal cells provide a biochemical basis for novel therapeutic strategies aimed at selectively inhibiting tumor energy metabolism. In this study, the energy blocker lonidamine (LND) was selected as a chemo-sensitizer of nimustine (ACNU) to explore its potential effects and underlying mechanisms in human glioblastoma in vitro and in vivo. A series of cell-level studies showed that LND significantly increased the cytotoxic effects of ACNU on glioblastoma cells. Furthermore, LND plus ACNU enhanced the energy deficiency by inhibiting glycolysis and mitochondrial function. Notably, LND almost completely downregulated MGMT expression by inducing intracellular acidification. The number of lethal DNA ICLs produced by ACNU increased after the LND pretreatment. The combination of LND and ACNU aggravated cellular oxidative stress. In resistant SF763 mouse tumor xenografts, LND plus ACNU significantly inhibited tumor growth with fewer side effects than ACNU alone. Finally, we proposed a new "HMAGOMR" chemo-sensitizing mechanism through which LND may act as a potential chemo-sensitizer to reverse ACNU resistance in glioblastoma: moderate inhibition of hexokinase (HK) activity (H); mitochondrial dysfunction (M); suppressing adenosine triphosphate (ATP)-dependent drug efflux (A); changing redox homeostasis to inhibit GSH-mediated drug inactivation (G) and increasing intracellular oxidative stress (O); downregulating MGMT expression through intracellular acidification (M); and partial inhibition of energy-dependent DNA repair (R).

4.
J Chem Inf Model ; 64(8): 3411-3429, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38511939

RESUMO

Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.


Assuntos
Reparo do DNA , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Humanos , Teoria Quântica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos de Nitrosoureia/química , Compostos de Nitrosoureia/farmacologia , Compostos de Nitrosoureia/metabolismo
5.
6.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067461

RESUMO

Molecular toxicology is a field that investigates the interactions between chemical or biological molecules and organisms at the molecular level [...].


Assuntos
Neoplasias , Toxicologia , Humanos , Neoplasias/genética , Neoplasias/prevenção & controle
7.
Biomed Pharmacother ; 167: 115631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804814

RESUMO

Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.


Assuntos
Carmustina , Glioma , Humanos , Carmustina/farmacologia , Carmustina/uso terapêutico , Micelas , Barreira Hematoencefálica , Glioma/tratamento farmacológico , Hipóxia/tratamento farmacológico , Microambiente Tumoral
8.
Pharmaceutics ; 15(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631385

RESUMO

O6-methylguanine-DNA methyltransferase (MGMT) constitutes an important cellular mechanism for repairing potentially cytotoxic DNA damage induced by guanine O6-alkylating agents and can render cells highly resistant to certain cancer chemotherapeutic drugs. A wide variety of potential MGMT inactivators have been designed and synthesized for the purpose of overcoming MGMT-mediated tumor resistance. We determined the inactivation potency of these compounds against human recombinant MGMT using [3H]-methylated-DNA-based MGMT inactivation assays and calculated the IC50 values. Using the results of 370 compounds, we performed quantitative structure-activity relationship (QSAR) modeling to identify the correlation between the chemical structure and MGMT-inactivating ability. Modeling was based on subdividing the sorted pIC50 values or on chemical structures or was random. A total of nine molecular descriptors were presented in the model equation, in which the mechanistic interpretation indicated that the status of nitrogen atoms, aliphatic primary amino groups, the presence of O-S at topological distance 3, the presence of Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X, the ionization potential and hydrogen bond donors are the main factors responsible for inactivation ability. The final model was of high internal robustness, goodness of fit and prediction ability (R2pr = 0.7474, Q2Fn = 0.7375-0.7437, CCCpr = 0.8530). After the best splitting model was decided, we established the full model based on the entire set of compounds using the same descriptor combination. We also used a similarity-based read-across technique to further improve the external predictive ability of the model (R2pr = 0.7528, Q2Fn = 0.7387-0.7449, CCCpr = 0.8560). The prediction quality of 66 true external compounds was checked using the "Prediction Reliability Indicator" tool. In summary, we defined key structural features associated with MGMT inactivation, thus allowing for the design of MGMT inactivators that might improve clinical outcomes in cancer treatment.

9.
J Nanobiotechnology ; 21(1): 291, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612719

RESUMO

Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.


Assuntos
Carcinoma , Carmustina , Feminino , Humanos , Carmustina/farmacologia , Células HeLa , Ácido Hialurônico , Microambiente Tumoral
10.
Int J Biol Macromol ; 246: 125657, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399878

RESUMO

Carmustine (BCNU) is a typical chemotherapy used for treatment of cerebroma and other solid tumors, which exerts antitumor effect by inducing DNA damage at O6 position of guanine. However, the clinical application of BCNU was extremely limited due to the drug resistance mainly mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability. To overcome these limitations, we developed a hypoxia-responsive nanomicelle with AGT inhibitory activity, which was successfully loaded with BCNU. In this nano-system, hyaluronic acid (HA) acts as an active tumor-targeting ligand to bind the overexpressing CD44 receptors on the surface of tumor cells. An azo bond selectively breaks in hypoxic tumor microenvironment to release O6-benzylguanine (BG) as AGT inhibitor and BCNU as DNA alkylating agent. The obtained HA-AZO-BG NPs with shell core structure had an average particle size of 176.98 ± 11.19 nm and exhibited good stability. Meanwhile, HA-AZO-BG NPs possessed a hypoxia-responsive drug release profile. After immobilizing BCNU into HA-AZO-BG NPs, the obtained HA-AZO-BG/BCNU NPs exhibited obvious hypoxia-selectivity and superior cytotoxicity in T98G, A549, MCF-7 and SMMC-7721 cells with IC50 at 189.0, 183.2, 90.1 and 100.1 µm, respectively, under hypoxic condition. Near-infrared imaging in HeLa tumor xenograft models showed that HA-AZO-BG/DiR NPs could effectively accumulate in tumor site at 4 h of post-injection, suggesting its good tumor-targetability. In addition, in vivo anti-tumor efficacy and toxicity evaluation indicated that HA-AZO-BG/BCNU NPs was more effective and less harmful compared to the other groups. After treatment, the tumor weight of HA-AZO-BG/BCNU NPs group was 58.46 % and 63.33 % of the control group and BCNU group, respectively. Overall, HA-AZO-BG/BCNU NPs was expected to be a promising candidate for targeted delivery of BCNU and elimination of chemoresistance.


Assuntos
Antineoplásicos Alquilantes , Carmustina , Humanos , Carmustina/farmacologia , Micelas , Células Tumorais Cultivadas , Proteínas de Transporte , Hipóxia , Receptores de Hialuronatos
11.
Biochem Pharmacol ; 215: 115726, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524206

RESUMO

Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/ß-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.


Assuntos
Neoplasias , O(6)-Metilguanina-DNA Metiltransferase , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antineoplásicos Alquilantes/farmacologia , Neoplasias/metabolismo , Alquilantes/uso terapêutico , Transdução de Sinais , DNA , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/uso terapêutico
12.
DNA Repair (Amst) ; 123: 103449, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36680944

RESUMO

Alkylating agents are genotoxic chemicals that can induce and treat various types of cancer. This occurs through covalent bonding with cellular macromolecules, in particular DNA, leading to the loss of functional integrity under the persistence of modifications upon replication. O6-alkylguanine (O6-AlkylG) adducts are proposed to be the most potent DNA lesions induced by alkylating agents. If not repaired correctly, these adducts can result, at the molecular level, in DNA point mutations, chromosome aberrations, recombination, crosslinking, and single- and double-strand breaks (SSB/DSBs). At the cellular level, these lesions can result in malignant transformation, senescence, or cell death. O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein capable of removing the alkyl groups from O6-AlkylG adducts in a damage reversal process that can prevent the adverse biological effects of DNA damage caused by guanine O6-alkylation. MGMT can thereby defend normal cells against tumor initiation, however it can also protect tumor cells against the beneficial effects of chemotherapy. Hence, MGMT can play an important role in both the prevention and treatment of cancer; thus, it can be considered as a double-edged sword. From a clinical perspective, MGMT is a therapeutic target, and it is important to explore the rational development of its clinical exploitation.


Assuntos
Neoplasias , O(6)-Metilguanina-DNA Metiltransferase , Humanos , Alquilantes , DNA/metabolismo , Dano ao DNA , Metilases de Modificação do DNA/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/prevenção & controle , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Biochem Pharmacol ; 199: 115029, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381210

RESUMO

Chloroethylnitrosoureas (CENUs) exert antitumor activity via producing dG-dC interstrand crosslinks (ICLs). However, tumor resistance make it necessary to find novel strategies to improve the therapeutic effect of CENUs. 2-Deoxy-D-glucose (2-DG) is a well-known glycolytic inhibitor, which can reprogram tumor energy metabolism closely related to tumor resistance. Here, we investigated the chemosensitization effect of 2-DG on l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) against glioblastoma cells and the underlying mechanisms. We found that 2-DG significantly increased the inhibitory effects of BCNU on tumor cells compared with BCNU alone, while 2-DG showed no obvious enhancing effect on the BCNU-induced cytotoxicity for normal HaCaT and HA1800 cells. Proliferation, migration and invasion determinations presented the same trend as survival on tumor cells. 2-DG plus BCNU increased the energy deficiency through a more effective inhibition of glycolytic pathway. Notably, the combination of 2-DG and BCNU aggravated oxidative stress in glioblastoma cells, along with a significant decrease in glutathione (GSH) levels, and an increase in intracellular reactive oxygen species (ROS). Subsequently, we demonstrated that the combination treatment led to increased apoptosis via activating mitochondria and endoplasmic reticulum stress (ERS) related apoptosis pathways. Finally, we found that the dG-dC level was significantly increased after 2-DG pretreatment compared to BCNU alone by HPLC-ESI-MS/MS analysis. Finally, in vivo, 2-DG plus BCNU significantly suppressed tumor growth with lower side effects compared with BCNU alone in tumor-bearing mice. In summary, we proposed that 2-DG may have potential to increase the sensitivity of glioblastoma cells to BCNU by regulating glycolysis, ROS and ERS pathways in clinical setting.


Assuntos
Carmustina , Glioblastoma , Animais , Carmustina/farmacologia , Desoxiglucose/farmacologia , Estresse do Retículo Endoplasmático , Glioblastoma/tratamento farmacológico , Glucose , Glutationa/metabolismo , Glicólise , Camundongos , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem
14.
Biomed Pharmacother ; 144: 112338, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678728

RESUMO

Chloroethylnitrosoureas (CENUs) are an important family of chemotherapies in clinical treatment of cancers, which exert antitumor activity by inducing the formation of DNA interstrand crosslinks (dG-dC ICLs). However, the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability largely decrease the antitumor efficacy of CENUs. In this study, we synthesized an azobenzene-based hypoxia-activated combi-nitrosourea prodrug, AzoBGNU, and evaluated its hypoxic selectivity and antitumor activity. The prodrug was composed of a CENU pharmacophore and an O6-benzylguanine (O6-BG) analog moiety masked by a N,N-dimethyl-4-(phenyldiazenyl)aniline segment as a hypoxia-activated trigger, which was designed to be selectively reduced via azo bond break in hypoxic tumor microenvironment, accompanied with releasing of an O6-BG analog to inhibit AGT and a chloroethylating agent to induce dG-dC ICLs. AzoBGNU exhibited significantly increased cytotoxicity and apoptosis-inducing ability toward DU145 cells under hypoxia compared with normoxia, indicating the hypoxia-responsiveness as expected. Predominant higher cytotoxicity was observed in the cells treated by AzoBGNU than those by traditional CENU chemotherapy ACNU and its combination with O6-BG. The levels of dG-dC ICLs in DU145 cells induced by AzoBGNU was remarkably enhanced under hypoxia, which was approximately 6-fold higher than those in the AzoBGNU-treated groups under normoxia and those in the ACNU-treated groups. The results demonstrated that azobenzene-based combi-nitrosourea prodrug possessed desirable tumor-hypoxia targeting ability and eliminated chemoresistance compared with the conventional CENUs.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Metilases de Modificação do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/antagonistas & inibidores , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas Supressoras de Tumor/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Humanos , Masculino , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Esferoides Celulares , Hipóxia Tumoral , Microambiente Tumoral , Proteínas Supressoras de Tumor/metabolismo
15.
Mater Sci Eng C Mater Biol Appl ; 122: 111919, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641912

RESUMO

As a framework for tissue engineering regeneration, the characteristics of cell scaffold materials directly affect cell adhesion, migration and metabolism. In this study, we have fabricated decellularized and decalcified fish scale-derived scaffolds and determined its basic physicochemical properties to serve as cell scaffolds in tissue engineering. Scanning electron microscopy (SEM) results showed that there were radial grooves and ring ridges on the surface of the scale-derived scaffolds, which could simulate three-dimensional microenvironment for cells culture. Similarity to the bone extracellular matrix, the main components of the fish scales were hydroxyapatite (HA) and type I collagen fibers, which were conducive to cells spreading and proliferation. Moreover, for culturing L929 cells and rat bone marrow mesenchymal stem cells (BMSCs), the fish scales as cell scaffolds exhibited high cytocompatibility to enhance cells adhesion and proliferation, and also displayed the ability to guide cells migration along the ridge channels. Accordingly, the results suggested that the fish scale-derived scaffolds had a great potential as a natural extracellular matrix for tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Animais , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Durapatita , Matriz Extracelular , Ratos , Alicerces Teciduais
16.
Cancers (Basel) ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187214

RESUMO

Lonidamine (LND) has the ability to resist spermatogenesis and was first used as an anti-spermatogenic agent. Later, it was found that LND has a degree of anticancer activity. Currently, LND is known to target energy metabolism, mainly involving the inhibition of monocarboxylate transporter (MCT), mitochondrial pyruvate carrier (MPC), respiratory chain complex I/II, mitochondrial permeability transition (PT) pore, and hexokinase II (HK-II). However, phase II clinical studies showed that LND alone had a weak therapeutic effect, and the effect was short and reversible. Interestingly, LND does not have the common side effects of traditional chemotherapeutic drugs, such as alopecia and myelosuppression. In addition, LND has selective activity toward various tumors, and its toxic and side effects do not overlap when combined with other chemotherapeutic drugs. Therefore, LND is commonly used as a chemosensitizer to enhance the antitumor effects of chemotherapeutic drugs based on its disruption of energy metabolism relating to chemo- or radioresistance. In this review, we summarized the combination treatments of LND with several typical chemotherapeutic drugs and several common physical therapies, such as radiotherapy (RT), hyperthermia (HT), and photodynamic therapy (PDT), and discussed the underlying mechanisms of action. Meanwhile, the development of novel formulations of LND in recent years and the research progress of LND derivative adjudin (ADD) as an anticancer drug were also discussed.

17.
Biomedicines ; 8(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158065

RESUMO

Tobacco smoke and human papillomavirus (HPV) are both crucial causes of cancer, and their cooperative carcinogenesis has drawn more attention in recent years. Apigenin (AP), a typical flavonoid abundantly found in flowers of plants, vegetables, and fruits, has been demonstrated to exert an anti-carcinogenic effect on various types of cancer. In this study, we investigated the capability of AP against malignant transformation and DNA damage of immortalized human esophageal epithelial (SHEE) cells induced by the synergism of HPV18 and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The results indicated that the enhancement of migration, invasion, and proliferation ability of SHEE cells induced by HPV and NNK could be effectively inhibited by AP. Moreover, the levels of pyridyloxybutylated (POB)-DNA adducts induced by NNK via P450-catalyzed metabolic activation could also be significantly suppressed by AP. Further analyses on the molecular mechanism revealed that AP inhibited the synergistic carcinogenesis of NNK and HPV on SHEE cells by reducing the expression of mutp53, CDK4, Cyclin D1, and p-Rb (Ser 780), increasing caspase-3 activity, thereby arresting the cell cycle at G1 phase and promoting apoptosis of SHEE cells. We hypothesize that the decrease in NNK-induced POB-DNA adduct levels is related to the deactivation of P450 by AP, which needs to be confirmed in future studies. This study highlights that AP may be employed as a promising chemopreventive agent against cancers in smokers with an HPV infection.

18.
Biochem Pharmacol ; 177: 113988, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330495

RESUMO

Chloroethylnitrosoureas (CENUs) are bifunctional antitumor alkylating agents, which exert their antitumor activity through inducing the formation of dG-dC interstrand crosslinks (ICLs) within DNA double strand. However, the complex process of tumor biology enables tumor cells to escape the killing triggered by CENUs, as for instance with the detoxifying activity of O6-methylguanine DNA methyltransferase (MGMT) to accomplish DNA damage repair. Considering the fact that most tumor cells highly depend on aerobic glycolysis to provide energy for survival even in the presence of oxygen (Warburg effect), inhibition of aerobic glycolysis may be an attractive strategy to overcome the resistance and improve the chemotherapeutic effects of CENUs. Especially, 3-bromopyruvate (3-BrPA), a small molecule alkylating agent, has been emerged as an effective glycolytic inhibitor (energy blocker) in cancer treatment. In view of its tumor specificity and inhibition on cellular multiple targets, it is likely to reduce the chemoresistance when chemotherapeutic drugs are combined with 3-BrPA. In this study, we investigated the effects of 3-BrPA on the chemosensitivity of two human hepatocellular carcinoma (HCC) cell lines to the cytotoxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and the underlying molecular mechanism. The sensitivity of SMMC-7721 and HepG2 cells to BCNU was significantly increased by 2 h pretreatment with micromolar dosage of 3-BrPA. Moreover, 3-BrPA decreased the cellular ATP and GSH levels, and extracellular lactate excreted by tumor cells, and the effects were more effective when 3-BrPA was combined with BCNU. Cellular hexokinase-II (HK-II) activity was also reduced after exposure to the treatment of 3-BrPA plus BCNU. Based on the above results, the effects of 3-BrPA on the formation of dG-dC ICLs induced by BCNU was investigated by stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results indicated that BCNU produced higher levels of dG-dC ICLs in SMMC-7721 and HepG2 cells pretreated with 3-BrPA compared to that without 3-BrPA pretreatment. Notably, in MGMT-deficient HepG2 cells, the levels of dG-dC ICLs were significantly higher than MGMT-proficient SMMC-7721 cells. In general, these findings revealed that 3-BrPA, as an effective glycolytic inhibitor, may be considered as a potential clinical chemosensitizer to optimize the therapeutic index of CENUs.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Carmustina/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Piruvatos/farmacologia , Trifosfato de Adenosina/biossíntese , Linhagem Celular Tumoral , DNA/química , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Glutationa/metabolismo , Glicólise/genética , Células Hep G2 , Hexoquinase/antagonistas & inibidores , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , O(6)-Metilguanina-DNA Metiltransferase/deficiência , O(6)-Metilguanina-DNA Metiltransferase/genética
19.
Toxicology ; 435: 152413, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109525

RESUMO

DNA interstrand cross-links (ICLs) are essential for the antitumor activity of chloroethylnitrosoureas (CENUs). Commonly, CENUs resistance is mainly considered to be associated with O6-methylguanine-DNA methyltransferase (MGMT) within tumors. Bypassing the MGMT-mediated resistance, to our knowledge, herein, we first utilized a novel glycolytic inhibitor, 3-bromopyruvate (3-BrPA), to increase the cytotoxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to human glioma cells based on the hypothesis that blocking energy metabolism renders tumor cells more sensitive to chemotherapy. We found 3-BrPA significantly increased the cell killing by BCNU in human glioma SF763 and SF126 cell lines. Significantly decreased levels of extracellular lactate, cellular ATP and glutathione (GSH) were observed after 3-BrPA treatment, and the effects were more remarkable with 3-BrPA in combination with BCNU. Considering that the role of ATP and GSH in drug efflux, DNA damage repair and drug inactivation, we determined the effect of 3-BrPA on the formation of dG-dC ICLs induced by BCNU using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As expected, the levels of lethal dG-dC ICLs induced by BCNU were obviously enhanced after 3-BrPA pretreatment. Based on these results, 3-BrPA and related glycolytic inhibitors may be promising to enhance the cell killing effect and reverse the clinical chemoresistance of CENUs and related antitumor agents.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Carmustina/farmacologia , Dano ao DNA , Glioma/tratamento farmacológico , Glicólise/efeitos dos fármacos , Piruvatos/farmacologia , Trifosfato de Adenosina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Resistência a Medicamentos , Glioma/metabolismo , Glioma/patologia , Glutationa/metabolismo , Humanos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo
20.
Chem Biol Interact ; 318: 108971, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32017913

RESUMO

Pulpal infection is one of the most common causes of dental emergency admission. Tooth pain due to infection caused by gram-negative bacteria is the main manifestation of this sort of dental problem. The GPR173 signaling pathway is a highly conserved G-protein-coupled receptor that mediates neurological and reproductive function. In this study, we found that GPR173 was fairly expressed in isolated human dental pulp cells, and its expression was reduced in response to pro-inflammatory lipopolysaccharide (LPS) treatment. The activation of GPR173 by its ligand Phoenixin-20 reduced LPS-induced cytotoxicity, as revealed by a reduction in the release of LDH. Additionally, Phoenixin-20 suppressed LPS-induced release of pro-inflammatory cytokines and inflammatory mediators, including IL-6, MCP-1, VCAM-1, and ICAM-1, as well as MMP-2 and MMP-9. Mechanistically, we showed the suppressive action of Phoenixin-20 on LPS-induced activation of TLR-4 and Myd88 as well as the activation of the NF-κB pathway. Collectively, our study demonstrates that the GPR173 signaling pathway is an important mediator of LPS-induced inflammation, and the activation of GPR173 by its natural ligand Phoenixin-20 exhibits robust anti-inflammatory effects in dental pulp cells, suggesting that GPR173 is an interesting target molecule in the development of pulp cell-based therapies.


Assuntos
Polpa Dentária/citologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Hormônios Peptídicos/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA