Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2213670120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749723

RESUMO

Autophagy supports the fast growth of established tumors and promotes tumor resistance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor therapy. However, effective autophagy inhibitors suitable for clinical use are currently lacking. There is a high demand for identifying novel autophagy drug targets and potent inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central transcriptional regulator of autophagy, which promotes lysosomal biogenesis and functions and systematically up-regulates autophagy. Despite extensive evidence that TFEB is a promising target for autophagy inhibition, no small molecular TFEB inhibitors were reported. Here, we show that an United States Food and Drug Administration (FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. EO selectively inhibits TFEB's transcriptional activity at the genomic scale according to RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Preparações Farmacêuticas/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Expressão Gênica , Lisossomos/metabolismo
2.
Environ Toxicol ; 37(1): 131-141, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34664771

RESUMO

Bisphenol A (BPA) is an estrogen-like compound, and an environmental hormone, that is commonly used in daily life. Therefore, it may enter the human body through food or direct contact, causing BPA residues in blood and urine. Because most studies focused on the analysis of BPA in reproductive cells or tissues, regarding evidence the effect of BPA on human retinal pigment epithelium (ARPE-19) cells unavailable. Accordingly, the present study explored the cytotoxicity of BPA on ARPE-19 cells. After BPA treatment, the expression of Bcl-XL an antiapoptotic protein, in the mitochondria decreased, and the expression of Bax, a proapoptotic protein increased. Then the mitochondrial membrane potential was affected. BPA changed in mitochondrial membrane potential led to the release of cytochrome C, which activated caspase-9 to promote downstream caspase-3 leading to cytotoxicity. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) pathway play a major role in age-related macular degeneration. Our results showed that expression of HO-1 and Nrf2 suppressed by BPA. Superoxide dismutase and catalase, which Nrf2 downstream antioxidants, were degraded by BPA. AMP-activated kinase (AMPK), which can regulate the phosphorylation of Nrf2, and the phosphorylation of AMPK expression was reduced by BPA. Finally, BPA-induced ROS generation and cytotoxicity were reduced by N-acetyl-l-cysteine. Taken together, these results suggest that BPA induced ARPE-19 cells via oxidative stress, which was associated with down regulated Nrf2/HO-1 pathway, and the mitochondria dependent apoptotic signaling pathway.


Assuntos
Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Antioxidantes/metabolismo , Apoptose , Compostos Benzidrílicos , Sobrevivência Celular , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fenóis , Epitélio Pigmentado da Retina/metabolismo
3.
Int J Numer Method Biomed Eng ; 28(11): 1156-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23109384

RESUMO

The finite element method with linear elastic assumption for predicting the intraocular pressure (IOP) readings after reshaping of the corneal structure is demonstrated in the present study. Twelve effective eye measurements in seven subjects were examined using the TOPCON LX-10, a noncontact intraocular pressure measurement technique, before and after laser-assisted in situ Keratomileusis surgery. A linear elastic model was introduced to reduce possible errors from a complicated anisotropic model with uncertain tissue parameters. Linear relationship between the simplified removal depth of laser-assisted in situ Keratomileusis and predicted IOP was expected, and the comparisons between measurements and the predicted model were made. The results indicated that the expected IOP readings are close to the measurement IOP values, while larger errors occur at smaller IOP conditions. In conclusion, the linear elastic finite element approach can already reveal parameters that influence measurement data the most, and the interaction between parameters was higher than we had expected. This helps us to build the confidence on implementing the anisotropic model.


Assuntos
Pressão Intraocular/fisiologia , Ceratomileuse Assistida por Excimer Laser In Situ , Modelos Biológicos , Tonometria Ocular/métodos , Algoritmos , Anisotropia , Engenharia Biomédica , Simulação por Computador , Córnea/anatomia & histologia , Córnea/fisiologia , Córnea/cirurgia , Elasticidade , Análise de Elementos Finitos , Ceratomileuse Assistida por Excimer Laser In Situ/efeitos adversos , Modelos Lineares , Tonometria Ocular/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA