Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407109, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702296

RESUMO

Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.

2.
Transl Cancer Res ; 13(4): 1623-1641, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737696

RESUMO

Background: The carcinogenesis and progression of colon adenocarcinoma (COAD) are intensively related to the abnormal expression of the zinc finger (ZNF) protein genes. We aimed to employ these genes to provide a reliable prognosis and treatment stratification tool for COAD patients. Methods: Cox and the least absolute shrinkage and selection operator (LASSO) regression analysis were applied, utilizing The Cancer Genome Atlas (TCGA) metadata, to build a ZNF protein gene-based prognostic model. Using this model, patients in the training cohort and testing cohort (GSE17537) were labelled as either high or low risk. Kaplan-Meier (KM) survival analysis and time-dependent receiver operating characteristic (ROC) curve analysis were performed in the patients with opposite risk status to assess the predictive ability in each cohort. The potentiality of the mechanism was explored by the estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE), single-sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the degrees of expression of model genes were validated by immunohistochemistry (IHC). Results: The prognostic model consisting of INSM1, PHF21B, RNF138, SYTL4, WRNIP1, ZNF585B, and ZNF514, classified patients into opposite risk statuses. Patients in the high-risk subset had a considerably lower chance of surviving compared to those in the low-risk subset. There is a high probability that these model genes were attached to immune-related biological processes, which can be confirmed by the results of the above mechanistic methods. Moreover, patients in the low-risk subset also significantly outperformed the patients in the high-risk subset when calculating immune cells and function scores. Drug sensitivity and tumor immune dysfunction and exclusion (TIDE) analyses showed a clear difference in the immunological and chemotherapeutic efficacy predictions within the two risk groups. Additionally, the degrees of expression of model genes in high-risk and low-risk subsets presented great discrepancies. Conclusions: The signature may be applied as a predictive classifier to shepherd special medication for COAD patients.

3.
ACS Biomater Sci Eng ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736179

RESUMO

Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.

4.
CNS Neurosci Ther ; 30(5): e14726, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38715251

RESUMO

AIMS: The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS: We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS: Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION: Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.


Assuntos
Astrócitos , Hipotermia , Nociceptividade , Área Pré-Óptica , Animais , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Nociceptividade/fisiologia , Hipotermia/induzido quimicamente , Masculino , Camundongos , Receptores Purinérgicos P1/metabolismo , Camundongos Endogâmicos C57BL , Adenosina/metabolismo , Capsaicina/farmacologia , Formaldeído/toxicidade , Formaldeído/farmacologia
5.
Clin Exp Immunol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507548

RESUMO

The enzymatic core component of m6A writer complex, Mettl3, plays a crucial role in facilitating the development and progress in gastric and colorectal cancer (CRC). However, its underlying mechanism in regulating intestinal inflammation remains unclear and poorly investigated. Firstly, the characteristics of Mettl3 expression in IBD patients were examined. Afterwards we generated the mice line with IECs-specific deletion of Mettl3 verified by various experiments. We continuously recorded and compared the physiological status including survival rate etc. between the two groups. Subsequently, we took advantage of staining assays to analyze mucosal damage and immune infiltration of Mettl3WT and Mettl3KO primary IECs. Bulk RNA sequencing was used to pursuit the differential expression of genes (DEGs) and associated signaling pathways after losing Mettl3. Pyroptosis-related proteins were to determine whether cell death was caused by pyroptosis. Eventually, CyTOF was performed to probe the difference of CD45+ cells, especially CD3e+ T cells clusters after losing Mettl3. In IBD patients, Mettl3 was highly expressed in the inner-nucleus of IECs while significantly decreased upon acute intestinal inflammation. IECs-specific deletion of Mettl3 KO mice triggered a wasting phenotype and developed spontaneous colitis. The survival rate, body weight and intestinal length observed from 2 to 8-week of Mettl3KO mice was significantly lower than Mettl3WT mice. The degree of mucosal damage and immune infiltration in Mettl3KO were even more serious than their WT littermate. Bulk RNA sequencing demonstrated that DEGs were dramatically enriched in NOD-signaling pathways due to the loss of Mettl3. The colonic epithelium were more prone to pyroptosis after losing Mettl3. Subsequently, CyTOF revealed that T cells have altered significantly in Mettl3KO. Furthermore, there were abnormal proliferation of CD4+ T and markedly exhaustion of CD8+ T in Mettl3KO mice. In severe IBD patients, Mettl3 located in the inner-nucleus of IECs and declined when intestinal inflammation occurred. Subsequently, Mettl3 prevented mice from developing colitis.

6.
Nucleic Acids Res ; 52(9): 5107-5120, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554113

RESUMO

Sirtuin 2 (SIRT2) regulates the maintenance of genome integrity by targeting pathways of DNA damage response and homologous recombination repair. However, whether and how SIRT2 promotes base excision repair (BER) remain to be determined. Here, we found that independent of its catalytic activity SIRT2 interacted with the critical glycosylase OGG1 to promote OGG1 recruitment to its own promoter upon oxidative stress, thereby enhancing OGG1 promoter activity and increasing BER efficiency. Further studies revealed that SIRT2 was phosphorylated on S46 and S53 by ATM/ATR upon oxidative stress, and SIRT2 phosphorylation enhanced the SIRT2-OGG1 interaction and mediated the stimulatory effect of SIRT2 on OGG1 promoter activity. We also characterized 37 cancer-derived SIRT2 mutants and found that 5 exhibited the loss of the stimulatory effects on OGG1 transcription. Together, our data reveal that SIRT2 acts as a tumor suppressor by promoting OGG1 transcription and increasing BER efficiency in an ATM/ATR-dependent manner.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , DNA Glicosilases , Reparo do DNA , Sirtuína 2 , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Humanos , Sirtuína 2/metabolismo , Sirtuína 2/genética , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Fosforilação , Regiões Promotoras Genéticas , Estresse Oxidativo , Ativação Transcricional , Células HEK293 , Dano ao DNA , Transcrição Gênica , Linhagem Celular Tumoral , Reparo por Excisão
7.
Cancer Lett ; 588: 216747, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38403110

RESUMO

Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (CDK4/6i) have rapidly received Food and Drug Administration (FDA) approval as a new type of therapy for patients with advanced hormone receptor-positive breast cancer. However, with the widespread application of CDK4/6i, drug resistance has become a new challenge for clinical practice and has greatly limited the treatment effect. Here, the whole microenvironment landscape of ER+ breast cancer tumors was revealed through single-cell RNA sequencing, and a specific subset of cancer-associated fibroblasts (CD63+ CAFs) was identified as highly enriched in CDK4/6i resistant tumor tissues. Then, we found that CD63+ CAFs can distinctly promote resistance to CDK4/6i in breast cancer cells and tumor xenografts. In addition, it was discovered that miR-20 is markedly enriched in the CD63+ CAFs-derived exosomes, which are used to communicate with ER+ breast cancer cells, leading to CDK4/6i resistance. Furthermore, exosomal miR-20 could directly target the RB1 mRNA 3'UTR and negatively regulate RB1 expression to decrease CDK4/6i sensitivity in breast cancer cells. Most importantly, we designed and synthesized cRGD-miR-20 sponge nanoparticles and found that they can enhance the therapeutic effect of CDK4/6i in breast cancer. In summary, our findings reveal that CD63+ CAFs can promote CDK4/6i resistance via exosomal miR-20, which induces the downregulation of RB1 in breast cancer cells, and suggest that CD63+ CAFs may be a novel therapeutic target to enhance CDK4/6i sensitivity.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Quinase 4 Dependente de Ciclina , Proliferação de Células , MicroRNAs/metabolismo , Quinase 6 Dependente de Ciclina , Microambiente Tumoral , Tetraspanina 30/metabolismo
8.
Ultrason Sonochem ; 103: 106800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359575

RESUMO

Fritillaria ussuriensis Maxim. (F.M.) has been widely used in both food and medication for more than 2000 years. In order to achieve its comprehensive utilization and investigate the structural characterization and biology activity, response surface methodology (RSM) was used to optimize the ultrasound-assisted extraction conditions of F.M. polysaccharides. The optimal extraction conditions were ultrasonic power of 174.2 W, ratio of liquid to material of 40.7 mL/g and ultrasonic time of 82.0 min. In addition, a neutral polysaccharide F-1 was obtained, and its structure characterization, antioxidant and immunological activity were evaluated. The structural properties of the polysaccharide were characterized by UV, IR, GC-MS, NMR and AFM. Monosaccharide composition of F-1 (MW 18.11 kDa) was rhamnose, arabinose, glucosamine hydrochloride, galactose, and glucose which under the ratio of 0.9: 3.8: 0.2: 2.9: 92.2. The fractions of F-1 were mainly linked by â†’ 6)-α-D-Glcp-(1 â†’ with branch chain α-D-Glcp-(1 â†’ 4)-α-D-Glcp-(1 â†’ and 4,6)-α-D-Glcp-(1 â†’ residues. Moreover, F-1 has a significant scavenging activity, which can clear hydroxyl radicals, superoxide anion, DPPH and ABTS. In addition, the immunological activity showed that F-1 had an effect on macrophage phagocytic activity. And it can increase the release of inflammatory factors including TNF-α, IL-1ß and IL-6. F-1 is a novel polysaccharide with significant activity in antioxidant and immunological activity, which has great potential for antioxidant and immunizer in food, pharmaceutical and cosmetic industries. The study can provide a methodological basis for polysaccharide research and theoretical basis for the industrialized production and practical application.


Assuntos
Antioxidantes , Fritillaria , Antioxidantes/farmacologia , Antioxidantes/química , Fritillaria/química , Peso Molecular , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos
9.
J Vasc Access ; : 11297298241233713, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390724

RESUMO

BACKGROUND: The dynamic needle tip positioning technique represents an advanced version of the short-axis out-of-plane ultrasound-guided approach employed for radial artery catheterization. The study aimed to explore the most effective insertion site capable of expeditiously and accurately executing the procedure in a clinical setting. METHODS: A prospective randomized controlled study encompassed 246 elective surgery patients necessitating invasive arterial monitoring. Participants were randomly assigned to three distinct groups: Site 1 (targeting the radial styloid process), Site 2 (midway between Sites 1 and 3), and Site 3 (distal one-third of the forearm). The dynamic needle tip positioning technique was implemented across all groups. Crucial parameters, such as first-attempt success rate, time to success, overall success rate, total catheterization time, number of attempts, and complications, were meticulously documented and compared. RESULTS: The Site 2 cohort presented a significantly heightened first-attempt success rate compared to Site 1 (97.5% vs 80%, p = 0.003) and Site 3 (97.5% vs 81.25%, p = 0.006). Moreover, Site 2 displayed a reduced time to success in contrast to Site 1 (31.5 vs 38, p = 0.003) and Site 3 (31.5 vs 40, p = 0.006). Total catheterization time was significantly shorter in Site 2 compared to Site 1 (32 vs 42.5, p < 0.001) and Site 3 (32 vs 43.5, p < 0.001). Site 2 necessitated fewer attempts than Site 1 (p = 0.02) and Site 3 (p = 0.03). Male gender and puncture at Site 2 were associated with expedited time to success. Adverse events manifested more frequently in the Site 3 group compared to the Site 1 group (15% vs 3.75%, p = 0.03) and the Site 2 group (15% vs 2.5%, p = 0.01). CONCLUSIONS: The optimal insertion site for ultrasound-guided radial artery catheterization utilizing the dynamic needle tip positioning technique in adult patients is situated midway between the radial styloid process and the distal one-third of the forearm.

10.
Mol Neurobiol ; 61(2): 883-899, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37668962

RESUMO

OBJECTIVE: Prolonged sleep deprivation is known to have detrimental effects on the hippocampus during development or in adulthood. Furthermore, it is well-established that sleep deprivation disrupts energy metabolism broadly. SIRT6 is a critical regulator of energy metabolism in both central and peripheral tissues. This study aims to investigate the role of SIRT6 in modulating hippocampal neurogenesis following sleep deprivation during development, and elucidate the underlying mechanism. METHODS: Male Sprague-Dawley rats, aged three weeks, were subjected to 2 weeks of sleep deprivation using the modified multiple platform method. Metabolomic profiling was carried out using the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC‒ESI‒MS/MS). To investigate the role of SIRT6 in energy metabolism, the rats were administered with either the SIRT6-specific inhibitor, OSS128167, or SIRT6-overexpressing adeno-associated virus (AAV). Hippocampal neurogenesis was assessed by immunostaining with markers for neural stem cells (SOX2), immature neurons [doublecortin (DCX)] and newborn cells (BrdU). Sparse labeling of adult neurons was used to determine the density of dendritic spines in the dentate gyrus (DG). The Y-maze and novel object recognition (NOR) tests were performed to evaluate the spatial and recognition memory. SIRT6 expression was examined using immunofluorescence and western blotting (WB). The inhibition of SIRT6 was confirmed by assessing the acetylation of histone 3 lysine 9 (aceH3K9), a well-known substrate of SIRT6, through WB. RESULTS: Sleep deprivation for a period of two weeks leads to inhibited hippocampal neurogenesis, reduced density of dendritic spines in the DG, and impaired memory, accompanied by decreased SIRT6 expression and disrupted energy metabolism. Similar to sleep deprivation, administration of OSS128167 significantly decreased energy metabolism, leading to reduced neurogenesis and memory dysfunction. Notably, the abnormal hippocampal energy metabolism, neurogenetic pathological changes and memory dysfunction caused by sleep deprivation were alleviated by SIRT6 overexpression in the DG. CONCLUSION: Our results suggest that SIRT6 plays a critical role in maintaining energy metabolism homeostasis in the hippocampus after sleep deprivation, promoting hippocampal neurogenesis and enhancing memory during development.


Assuntos
Sirtuínas , Privação do Sono , Animais , Masculino , Ratos , Giro Denteado/metabolismo , Metabolismo Energético , Hipocampo/metabolismo , Neurogênese , Ratos Sprague-Dawley , Sirtuínas/metabolismo , Privação do Sono/metabolismo , Espectrometria de Massas em Tandem
11.
Anal Chem ; 95(48): 17798-17807, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976298

RESUMO

The difficulty in elucidating the microenvironment of extracellular H2O2 efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for H2O2 efflux. The release of endogenous H2O2 is used as a "physiological switch" for HRP to enable proximity labeling. Using this platform, we visualize the oxidative stress state of tumor cells under the condition of nutrient withdrawal, as well as that of macrophages exposed to nonparticulate stimuli. Furthermore, in combination with a proteomics technique, we identify candidate proteins at the invasion interface between fungal mimics (zymosan) and macrophages by interception labeling of locally accumulated H2O2 and confirm that Toll-like receptor 2 binds zymosan in a glycan-dependent manner. The IPL platform has great potential to elucidate the mechanisms underlying biological processes involving redox pathways.


Assuntos
Peróxido de Hidrogênio , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo , Zimosan , Peroxidase do Rábano Silvestre/metabolismo , Oxirredução
12.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895137

RESUMO

Uncaria rhynchophylla (Gouteng in Chinese, GT) is the main medicine in many traditional recipes in China. It is commonly used to alleviate central nervous system (CNS) disorders, although its mechanism in Alzheimer's disease is still unknown. This study was designed to predict and validate the underlying mechanism in AD treatment, thus illustrating the biological mechanisms of GT in treating AD. In this study, a PPI network was constructed, KEGG analysis and GO analysis were performed, and an "active ingredient-target-pathway" network for the treatment of Alzheimer's disease was constructed. The active ingredients of GT were screened out, and the key targets were performed by molecular docking. UHPLC-Q-Exactive Orbitrap MS was used to screen the main active ingredients and was compared with the network pharmacology results, which verified that GT did contain the above ingredients. A total of targets were found to be significantly bound up with tau, Aß, or Aß and tau through the network pharmacology study. Three SH-SY5Y cell models induced by okadaic acid (OA), Na2S2O4, and H2O2 were established for in vitro validation. We first found that GT can reverse the increase in the hyperphosphorylation of tau induced by OA to some extent, protecting against ROS damage. Moreover, the results also indicated that GT has significant neuroprotective effects. This study provides a basis for studying the potential mechanisms of GT in the treatment of AD.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Ácido Okadáico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
13.
J Trace Elem Med Biol ; 80: 127304, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734209

RESUMO

BACKGROUND AND PURPOSE: Iron homeostasis disturbance has been suggested to play a role in the pathology of Alzheimer's disease (AD). Systemic iron levels are regulated by iron-related proteins, such as ferritin and transferrin. This meta-analysis was established to evaluate iron and iron-related proteins (ferritin, transferrin, lactoferrin, haptoglobin, hepcidin) in cerebrospinal fluid (CSF) and blood samples of AD patients compared with those in healthy controls (HCs). METHODS: Iron and iron-related proteins in Alzheimer's disease was systematically searched within five databases (PubMed, EMBASE, Web of Science, Cochrane, Scopus) up to October 23, 2022. Fifty-four studies (with data for 5105 participants: 2174 AD patients and 2931 HCs) were included in this meta-analysis. This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), applying Stata 14.0 software. RESULTS: Decreased iron in blood and increased ferritin in CSF were found in AD patients compared with the levels in HCs. AD patients also exhibited lower lactoferrin in serum. Other variables (iron in CSF, ferritin in blood, transferrin in CSF/blood, haptoglobin in CSF/blood, and hepcidin in blood) did not differ between the groups. CONCLUSION: This meta-analysis indicated that iron and iron-related proteins were associated with the risk of AD, suggesting the value of further exploration of iron imbalance in AD using biofluids.


Assuntos
Doença de Alzheimer , Humanos , Ferro , Hepcidinas , Haptoglobinas , Lactoferrina , Ferritinas , Transferrina
14.
Biotechnol Biofuels Bioprod ; 16(1): 101, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312226

RESUMO

BACKGROUND: L-Methionine is the only bulk amino acid that has not been industrially produced by the fermentation method. Due to highly complex and strictly regulated biosynthesis, the development of microbial strains for high-level L-methionine production has remained challenging in recent years. RESULTS: By strengthening the L-methionine terminal synthetic module via site-directed mutation of L-homoserine O-succinyltransferase (MetA) and overexpression of metAfbr, metC, and yjeH, L-methionine production was increased to 1.93 g/L in shake flask fermentation. Deletion of the pykA and pykF genes further improved L-methionine production to 2.51 g/L in shake flask fermentation. Computer simulation and auxotrophic experiments verified that during the synthesis of L-methionine, equimolar amounts of L-isoleucine were accumulated via the elimination reaction of cystathionine γ-synthetase MetB due to the insufficient supply of L-cysteine. To increase the supply of L-cysteine, the L-cysteine synthetic module was strengthened by overexpression of cysEfbr, serAfbr, and cysDN, which further increased the production of L-methionine by 52.9% and significantly reduced the accumulation of the byproduct L-isoleucine by 29.1%. After optimizing the addition of ammonium thiosulfate, the final metabolically engineered strain MET17 produced 21.28 g/L L-methionine in 64 h with glucose as the carbon source in a 5 L fermenter, representing the highest L-methionine titer reported to date. CONCLUSIONS: In this study, a high-efficiency strain for L-methionine production was derived from wild-type Escherichia coli W3110 by rational metabolic engineering strategies, providing an efficient platform for the industrial production of L-methionine.

15.
Rev Sci Instrum ; 94(1): 015102, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725543

RESUMO

A combined melt-stretching and quenching setup is designed and developed to allow experimental investigations of polymer crystallization under the complex flow-temperature environments comparable to those encountered in the actual industrial processing. The melt-stretching proceeds by two drums rotating in the opposite directions with simultaneous recording of a stress-strain curve, where the Hencky strain and strain rate (≤233 s-1) are adjustable over a large range. After stretching, liquid N2 is used as a cooling medium to quench the free-standing melt, which is sprayed directly to the deformed melt driven by an electric pump. To ensure a high cooling efficiency, a three-way solenoid valve is employed to execute a sequential control of the liquid N2 flow direction to reduce the boil-off of liquid N2 before entering the sample chamber. The melt cooling rate depends on the liquid N2 flow rate controlled by a flow valve, which is up to 221 °C/s when quenching the isotactic polypropylene (iPP) melt with a thickness of 0.28 mm at 150 °C. Two independent temperature control modules are designed to meet the requirements of different stages of melt-stretching and quenching. To verify the capability of the setup, we have performed the melt-stretching and quenching experiments on iPP samples. The setup is demonstrated to be a valuable new tool to study polymer crystallization under coupled flow-cooling fields.

16.
Kurume Med J ; 67(4): 147-161, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464275

RESUMO

BACKGROUND: Recent progress of cancer therapy has increased the number of cancer survivors, in whom cardiovascular diseases (CVDs) have become a big concern. This study aimed to clarify the prevalence of various types of CVDs in cancer patients, using the database of the Cardiovascular Medicine in Kurume University Hospital. METHODS AND RESULTS: This retrospective cohort study enrolled 11,093 hospitalized patients in Cardiovascular Medicine, Kurume University Hospital from April 2011 to March 2019. Among 11,093 enrolled patients, there were 992 CVDs patients with cancer (8.94%). The five most prevalent forms of cancer were colon cancer, prostate cancer, hepatocellular carcinoma, lung cancer, and gastric cancer. Although there was no statistical significance, the comorbidity of breast cancer gradually increased during the study period (2011-2018). In all CVDs, prostate cancer, lung cancer, and uterine cancer tended to increase as comorbidities, while hepatocellular carcinoma and tongue cancer tended to decrease during the observational period. The absolute number of patients with cancer increased in all CVDs, including coronary artery diseases, heart failure, arrhythmia, and pulmonary hypertension. CONCLUSIONS: The present study demonstrates that the prevalence of cancer in hospitalized CVDs patients was around 10%, and is showing a tendency to increase. Thus, cancer may have substantial impacts on CVDs treatment.


Assuntos
Carcinoma Hepatocelular , Doenças Cardiovasculares , Neoplasias Hepáticas , Neoplasias Pulmonares , Masculino , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/terapia , Estudos Retrospectivos , Prevalência , Neoplasias Pulmonares/epidemiologia , Neoplasias Hepáticas/epidemiologia
17.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558181

RESUMO

The incidence of colon cancer is increasing year over year, seriously affecting human health and quality of life in recent years. However, traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. S. officinalis Saponins (S-Saponins), the potential compound of TCM, displays multiple biological activities in colon cancer treatment. In our study, ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with multivariate statistical analysis were performed to analyze and identify raw and processed saponins. Then, MTT and cell migration assays were used to preliminarily explore the effects of saponins in vitro on colon cancer cells. The results showed that 29 differential saponins compounds under Paozhi were identified by UHPLC-MS/MS. Moreover, in vitro validation showed that Sprocessed better inhibited the proliferation and migration of colon cancer cells than Sraw. This study provides a basis for the determination of the chemical fundamentals of the efficacy changes during Paozhi through inferring the changes in saponin components and its possible transformation mechanisms before and after processing S. officinalis. Meanwhile, it also provides new insights into potential bioactive ingredients for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , Medicamentos de Ervas Chinesas , Sanguisorba , Saponinas , Humanos , Saponinas/química , Espectrometria de Massas em Tandem/métodos , Qualidade de Vida , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Neoplasias do Colo/tratamento farmacológico
18.
Life Sci ; 309: 121005, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174712

RESUMO

AIMS: Di (2-ethylhexyl) phthalate (DEHP), as an environmental endocrine-disrupting chemical (EDC), can induce male reproductive injury. N6-methyladenosine (m6A) plays a vital role in environmental exposure-induced diseases by regulating gene expression. Therefore, we aim to investigate the role of m6A in DEHP-induced reproductive injury. MAIN METHODS: We established an in vivo model of mice exposed to DEHP to explore the effect of DEHP on reproductive injury and m6A. To further explore the molecular mechanism of DEHP toxicity, we built a model of GC-2 cells exposed to mono-(2-ethylhexyl) phthalate (MEHP) in vitro and further silenced Mettl3 in GC-2cells. Besides, we also conducted MeRIP-qPCR and RIP assays to identify the target genes for m6A modification. KEY FINDINGS: DEHP induced testicular injury and senescence. And telomeres shortening, reduced levels of telomere repeat-binding factor 1 (TRF1), TRF2, protection of telomeres 1 (POT1), and telomerase reverse transcriptase (TERT) can be observed in DEHP-treated testes. MEHP also induced GC-2 cellular senescence and telomere dysfunction. Besides, increased m6A mediated by METTL3 stabilized homeobox containing 1 (Hmbox1) in an m6A-dependent manner in MEHP-exposed GC-2 cells. Mettl3 knockdown led to lower m6A modification and reduced Hmbox1 stability, resulting in further shortening of telomere length. SIGNIFICANCE: our work uncovered that DEHP led to male reproductive injury by telomere dysfunction and m6A modified Hmbox1 contributed to maintaining telomere homeostasis in this process, suggesting that accurate regulation of m6A modification level by drugs has potential value in the treatment of DEHP-induced male reproductive injury.


Assuntos
Dietilexilftalato , Telomerase , Animais , Masculino , Camundongos , Dietilexilftalato/toxicidade , Telomerase/metabolismo , Telômero/genética , Adenosina , Proteínas de Homeodomínio/metabolismo
19.
Front Plant Sci ; 13: 919294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979072

RESUMO

Essential oils have attracted wide attention in recent years due to their extensive applications in natural functional ingredients, pharmaceutical preparations, biomedical products, and the cosmetics industry. In this study, the chemical compositions and biological activities of essential oils extracted from six Lamiaceae herbs, including Pogostemon cablin (Blanco) Benth. (PCEO), Perilla frutescens (L.) Britton (PFEO), Salvia japonica Thunb. (SJEO), Rosmarinus officinalis L. (ROEO), Lavandula angustifolia Mill. (LAEO), and Agastache rugosa (Fisch. & C. A. Mey.) Kuntze (AREO), were determined and analyzed. A total of 167 components were identified from the six essential oils by GC-MS analysis, with 35, 24, 47, 46, 54, and 37 components in PCEO, PFEO, SJEO, ROEO, LAEO, and AREO, respectively. Hierarchical cluster analysis of chemical compositions showed that the composition of the six essential oils was significantly different in content, and they were clearly divided into six classes. However, all of these six essential oils exhibited promising anti-inflammatory activity by inhibiting the expression of interleukin-1, interleukin-6, tumor necrosis factor-α, and cyclooxygenase-2 in rats with adjuvant arthritis, among which PFEO had the best performance. In addition, the six essential oils displayed significant cytotoxicity on B16 (IC50 = 86.91-228.91 µg/mL) and LNCaP cell lines (IC50 = 116.4-189.63 µg/mL). Meanwhile, all of them presented satisfactory antioxidant activity (IC50 = 4.88-13.89 µg/mL) compared with Trolox C (IC50 = 13.83 µg/mL), and SJEO (IC50 = 7.93 µg/mL) served as an optimal candidate natural antioxidant by DPPH assay. Taken together, these results indicate that the six Lamiaceae essential oils manifest excellent and diverse biological activities, enabling them to be used as perfect natural functional ingredients in antioxidant, antitumor, or anti-arthritic drugs. This study provides more references for pharmaphylogeny research and drug discovery from folk medicinal plants.

20.
Chem Sci ; 13(24): 7355-7364, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799809

RESUMO

Synergistic photothermal therapy (PTT) with gene therapy (GT) has drawn emerging interest in the improvement of cancer therapeutic efficiency, while the co-delivery of photothermal agents (PTAs) and therapeutic genes by an integrated nanoplatform, with controllability and biodegradability, is still challenging and urgently desired. Herein, a multi-functional metal-organic framework (MOF) based PTT-GT platform (siRNA@PT-ZIF-8) was developed, which was constructed with siRNA, a near-infrared (NIR) responsive organic dye IR780 derivative (IR780-1), and 2-methylimidazole (2-MIM) by a facile one-pot self-assembly method. This "all-in-one" system of siRNA@PT-ZIF-8 enabled not only photothermal/photoacoustic/fluorescence multimodal imaging but also tumor microenvironment responsiveness for specific and on-demand release of therapeutic cargos, overcoming the inherent limitations of free gene or organic PTA molecules (e.g., short blood circulation half-life and weak stability) in conventional PTT and GT. This nanoplatform provides an efficient and safe strategy for cancer theranostics, and the one-step assembly strategy favors personalized formulation design for diverse demands in cancer management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA