Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Hum Mol Genet ; 30(3-4): 172-181, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33480989

RESUMO

Telomere fusions lead to a state of genomic instability, and are thought to drive clonal evolution and tumorigenesis. Telomere fusions occur via both Classical and Alternative Non-Homologous End Joining repair pathways. AsiDNA is a DNA repair inhibitor that acts by mimicking a DNA double strand break (DSB) and hijacking the recruitment of proteins involved in various DNA repair pathways. In this study, we investigated whether the inhibition of DSB-repair pathways by AsiDNA could prevent telomere fusions during crisis. The present study showed that AsiDNA decreased the frequency of telomere fusions without affecting the rate of telomere erosion. Further, it indicated that AsiDNA does not impact the choice of the repair pathway used for the fusion of short dysfunctional telomeres. AsiDNA is thought to prevent short telomeres from fusing by inhibiting DNA repair. An alternative, non-mutually exclusive possibility is that cells harbouring fusions preferentially die in the presence of AsiDNA, thus resulting in a reduction in fusion frequency. This important work could open the way for investigating the use of AsiDNA in the treatment of tumours that have short dysfunctional telomeres and/or are experiencing genomic instability.


Assuntos
Reparo do DNA/efeitos dos fármacos , Encurtamento do Telômero , Telômero/metabolismo , Células HCT116 , Humanos
2.
Front Oncol ; 9: 1097, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781480

RESUMO

Purpose: Carboplatin is used to treat many cancers, but occurrence of drug resistance and its high toxicity remain a clinical hurdle limiting its efficacy. We compared the efficacy and toxicity of DNA repair inhibitors olaparib or AsiDNA administered alone or in combination with carboplatin. Olaparib acts by inhibiting PARP-dependent repair pathways whereas AsiDNA inhibits double-strand break repair by preventing recruitment of enzymes involved in homologous recombination and non-homologous end joining. Experimental Design: Mice with MDA-MB-231 tumors were treated with carboplatin or/and olaparib or AsiDNA for three treatment cycles. Survival and tumor growth were monitored. Toxicities of treatments were assayed in C57BL/6 immunocompetent mice. Circulating blood hematocrits, bone marrow cells, and organs were analyzed 10 and 21 days after end of treatment using flow cytometry and microscopy analysis. Resistance occurrence was monitored after cycles of treatments with combination of AsiDNA and carboplatin in independent BC227 cell cultures. Results: Olaparib or AsiDNA monotherapies decreased tumor growth and increased mean survival of grafted animals. The combination with carboplatin further increased survival. Carboplatin toxicity resulted in a decrease of most blood cells, platelets, thymus, and spleen lymphocytes. Olaparib or AsiDNA monotherapies had no toxicity, and their combination with carboplatin did not increase toxicity in the bone marrow or thrombocytopenia. All animals receiving carboplatin combined with olaparib developed high liver toxicity with acute hepatitis at 21 days. In vitro, carboplatin resistance occurs after three cycles of treatment in all six tested cultures, whereas only one became resistant (1/5) after five cycles when carboplatin was associated to low doses of AsiDNA. All selected carboplatin-resistant clones retain sensitivity to AsiDNA. Conclusion: DNA repair inhibitor treatments are efficient in the platinum resistant model, MDA-MB-231. The combination with carboplatin improves survival. The association of carboplatin with olaparib is associated with high liver toxicity, which is not observed with AsiDNA. AsiDNA could delay resistance to carboplatin without increasing its toxicity.

3.
Eur Radiol ; 27(10): 4435-4444, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28374075

RESUMO

OBJECTIVE: This study aimed to explore the antitumour effect of the DNA repair inhibitor, DT01 (the cholesterol conjugated form of Dbait), as an adjunct treatment to enhance the therapeutic efficacy of transarterial chemoembolization (TACE) in pre-clinical models of hepatocellular carcinoma (HCC). METHODS: A rabbit model bearing liver tumours was either left untreated or treated with TACE or with a combination of TACE+DT01. Tumour growth was monitored by ultrasound. These results were further confirmed in mice grafted with an intrahepatic human HCC model treated with doxorubicin (DOX) alone or DOX+DT01. RESULTS: The combination of DT01 with TACE in a rabbit liver model led to a significant decrease in tumour volume (p=0.03). Colour Doppler and immunohistochemical staining revealed a strong decrease in vascularization in the DT01+TACE-treated group preventing the tumour growth restart observed after TACE alone. Similarly, the DT01 combination with DOX led to significant anti-tumour efficacy compared to DOX alone (p=0.02) in the human HCC model. In addition, a significant decrease in vascularization in the group receiving combination DT01 and DOX treatment was observed. CONCLUSIONS: DT01 is well tolerated and may potentiate HCC treatment by enhancing the DNA-damaging and anti-vascularization effect of TACE with doxorubicin. KEY POINTS: • DT01 combined with TACE leads to significant anti-tumour efficacy without additional toxicity. • A potential anti-angiogenic role of DT01 was identified in preclinical models. • DT01 may potentiate HCC treatment by enhancing the efficacy of TACE.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica , Colesterol/análogos & derivados , Reparo do DNA/efeitos dos fármacos , DNA/uso terapêutico , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/terapia , Animais , Carcinoma Hepatocelular/genética , Quimioembolização Terapêutica/métodos , Colesterol/uso terapêutico , Dano ao DNA , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/genética , Masculino , Coelhos , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
4.
J Oleo Sci ; 66(4): 399-405, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28239059

RESUMO

The contact toxicity and repellent activities of the essential oil extracted from the rhizomes of Zingiber zerumbet (L.) Smith (Zingiberaceae) was evaluated against cigarette beetles (Lasioderma serricorne). The essential oil obtained by hydrodistillation was investigated by GC-FID and GC-MS. The main constituents of the essential oil were zerumbone (40.2%), α-caryophyllene (8.6%), humulene epoxide II (7.3%), camphene (5.9%) and fenchene (4.7%). Zerumbone and its analogues totally are accounting for 60.3% of the essential oil. It was found that the essential oil possessed contact toxicity against L. serricorne adults with a LD50 value of 48.3 µg/adult. α-Caryophyllene (LD50 = 13.1 µg/adult) exhibited stronger contact toxicity against L. serricorne than humulene oxide (LD50 = 31.2 µg/adult), ß-caryophyllene (LD50 = 35.5 µg/adult) and zerumbone (LD50 = 42.4 µg/adult). Moreover, α-caryophyllene possessed strong repellent activity (Class IV and V, respectively) against the beetles at 78.63 nL/cm2, after 2 and 4 h treatment. The results indicate that zerumbone and its analogues might be developed into natural insecticides or repellents for control of cigarette beetles, but their bioactivities are affected by their structures.


Assuntos
Besouros , Repelentes de Insetos , Inseticidas , Óleos de Plantas , Sesquiterpenos , Animais , Monoterpenos/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Zingiberaceae
5.
Clin Cancer Res ; 23(4): 1001-1011, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27559053

RESUMO

Purpose: Cancer treatments using tumor defects in DNA repair pathways have shown promising results but are restricted to small subpopulations of patients. The most advanced drugs in this field are PARP inhibitors (PARPi), which trigger synthetic lethality in tumors with homologous recombination (HR) deficiency. Using AsiDNA, an inhibitor of HR and nonhomologous end joining, together with PARPi should allow bypassing the genetic restriction for PARPi efficacy.Experimental Design: We characterized the DNA repair inhibition activity of PARPi (olaparib) and AsiDNA by monitoring repair foci formation and DNA damage. We analyzed the cell survival to standalone and combined treatments of 21 tumor cells and three nontumor cells. In 12 breast cancer (BC) cell lines, correlation with sensitivity to each drug and transcriptome were statistically analyzed to identify resistance pathways.Results: Molecular analyses demonstrate that olaparib and AsiDNA respectively prevent recruitment of XRCC1 and RAD51/53BP1 repair enzymes to damage sites. Combination of both drugs increases the accumulation of unrepaired damage resulting in an increase of cell death in all tumor cells. In contrast, nontumor cells do not show an increase of DNA damage nor lethality. Analysis of multilevel omics data from BC cells highlighted different DNA repair and cell-cycle molecular profiles associated with resistance to AsiDNA or olaparib, rationalizing combined treatment. Treatment synergy was also confirmed with six other PARPi in development.Conclusions: Our results highlight the therapeutic interest of combining AsiDNA and PARPi to recapitulate synthetic lethality in all tumors independently of their HR status. Clin Cancer Res; 23(4); 1001-11. ©2016 AACR.


Assuntos
Neoplasias/tratamento farmacológico , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Poli(ADP-Ribose) Polimerases/genética , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Recombinação Homóloga/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Ftalazinas/efeitos adversos , Piperazinas/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Rad51 Recombinase/genética , Mutações Sintéticas Letais/efeitos dos fármacos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
6.
Oncotarget ; 7(11): 12927-36, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26887045

RESUMO

Radiolabelled melanin ligands offer an interesting strategy for the treatment of disseminated pigmented melanoma. One of these molecules, ICF01012 labelled with iodine 131, induced a significant slowing of melanoma growth. Here, we have explored the combination of [131I]ICF01012 with coDbait, a DNA repair inhibitor, to overcome melanoma radioresistance and increase targeted radionuclide therapy (TRT) efficacy. In human SK-Mel 3 melanoma xenograft, the addition of coDbait had a synergistic effect on tumor growth and median survival. The anti-tumor effect was additive in murine syngeneic B16Bl6 model whereas coDbait combination with [131I]ICF01012 did not increase TRT side effects in secondary pigmented tissues (e.g. hair follicles, eyes). Our results confirm that DNA lesions induced by TRT were not enhanced with coDbait association but, the presence of micronuclei and cell cycle blockade in tumor shows that coDbait acts by interrupting or delaying DNA repair. In this study, we demonstrate for the first time, the usefulness of DNA repair traps in the context of targeted radionuclide therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reparo do DNA/efeitos dos fármacos , DNA/farmacologia , Melanoma Experimental/tratamento farmacológico , Animais , Sinergismo Farmacológico , Feminino , Humanos , Radioisótopos do Iodo/farmacologia , Masculino , Melanoma/patologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Quinoxalinas/farmacologia , Proteína Tumoral 1 Controlada por Tradução , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer Ther ; 15(1): 15-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26637369

RESUMO

Metastatic liver disease from colorectal cancer is a significant clinical problem. This is mainly attributed to nonresectable metastases that frequently display low sensitivities to available chemotherapies and develop drug resistance partly via hyperactivation of some DNA repair functions. Combined therapies have shown some disease control; however, there is still a need for more efficient chemotherapies to achieve eradication of colorectal cancer liver metastasis. We investigated the tolerance and efficacy of a novel class of DNA repair inhibitors, Dbait, in association with conventional chemotherapy. Dbait mimics double-strand breaks and activates damage signaling, consequently inhibiting single- and double-stranded DNA repair enzyme recruitment. In vitro, Dbait treatment increases sensitivity of HT29 and HCT116 colorectal cancer cell lines. In vivo, the pharmacokinetics, biodistribution and the efficacy of the cholesterol-conjugated clinical form of Dbait, DT01, were assessed. The chemosensitizing abilities of DT01 were evaluated in association with oxaliplatin and 5-fluorouracil in intrahepatic HT29 xenografted mice used as a model for colorectal cancer liver metastasis. The high uptake of DT01 indicates that the liver is a specific target. We demonstrate significant antitumor efficacy in a liver metastasis model with DT01 treatment in combination with oxaliplatin and 5-fluorouracil (mean: 501 vs. 872 mm(2), P = 0.02) compared to chemotherapy alone. The decrease in tumor volume is further associated with significant histologic changes in necrosis, proliferation, angiogenesis and apoptosis. Repeated cycles of DT01 do not increase chemotherapy toxicity. Combining DT01 with conventional chemotherapy may prove to be a safe and effective therapeutic strategy in the treatment of metastatic liver cancer.


Assuntos
Antineoplásicos/farmacologia , Colesterol/análogos & derivados , Neoplasias Colorretais/patologia , Reparo do DNA/efeitos dos fármacos , DNA/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/secundário , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Colesterol/administração & dosagem , Colesterol/farmacologia , Neoplasias Colorretais/tratamento farmacológico , DNA/administração & dosagem , Modelos Animais de Doenças , Feminino , Fluoruracila/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Molecules ; 20(12): 21939-45, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26670226

RESUMO

The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%), eucalyptol (15.16%), ß-pinene (11.15%) and α-pinene (10.50%). These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD50 = of 24.59 µg/adult) and fumigant (LC50 = of 9.91 mg/L air) toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.


Assuntos
Alpinia/química , Besouros/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Rizoma/química , Animais , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/isolamento & purificação , Óleos Voláteis/isolamento & purificação
9.
Neoplasia ; 16(10): 835-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25379020

RESUMO

Melanomas are highly radioresistant tumors, mainly due to efficient DNA double-strand break (DSB) repair. Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by radiation therapy (RT). First, the cytotoxic efficacy of Dbait in combination with RT was evaluated in vitro in SK28 and 501mel human melanoma cell lines. Though the extent of RT-induced damage was not increased by Dbait, it persisted for longer revealing a repair defect. Dbait enhanced RT efficacy independently of RT doses. We further assayed the capacity of DT01 (clinical form of Dbait) to enhance efficacy of "palliative" RT (10 × 3 Gy) or "radical" RT (20 × 3 Gy), in an SK28 xenografted model. Inhibition of repair of RT-induced DSB by DT01 was revealed by the significant increase of micronuclei in tumors treated with combined treatment. Mice treated with DT01 and RT combination had significantly better tumor growth control and longer survival compared to RT alone with the "palliative" protocol [tumor growth delay (TGD) by 5.7-fold; median survival: 119 vs 67 days] or the "radical" protocol (TGD by 3.2-fold; median survival: 221 vs 109 days). Only animals that received the combined treatment showed complete responses. No additional toxicity was observed in any DT01-treated groups. This preclinical study provides encouraging results for a combination of a new DNA repair inhibitor, DT01, with RT, in the absence of toxicity. A first-in-human phase I study is currently under way in the palliative management of melanoma in-transit metastases (DRIIM trial).


Assuntos
Reparo do DNA/efeitos dos fármacos , Desoxirribonucleotídeos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Radiossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Relação Dose-Resposta à Radiação , Feminino , Humanos , Melanoma/mortalidade , Camundongos Nus , Terapia de Alvo Molecular , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Radiology ; 270(3): 736-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24475822

RESUMO

PURPOSE: To assess the usefulness of combining hyperthermia with a DNA repair inhibitor (double-strand break bait [Dbait]) and its potential application to radiofrequency ablation (RFA) in a preclinical model of human colorectal cancer. MATERIALS AND METHODS: The local ethics committee of animal experimentation approved all investigations. First, the relevance was assessed by studying the survival of four human colorectal adenocarcinoma cell cultures after 1 hour of hyperthermia at 41°C or 43°C with or without Dbait. Human colon adenocarcinoma cells (HT-29) were grafted subcutaneously into nude mice (n = 111). When tumors reached approximately 500 mm(3), mice were treated with Dbait alone (n = 20), sublethal RFA (n = 21), three different Dbait schemes and sublethal RFA (n = 52), or a sham treatment (n = 18). RFA was performed to ablate the tumor center alone. To elucidate antitumor mechanisms, 39 mice were sacrificed for blinded pathologic analysis, including assessment of DNA damage, cell proliferation, and tumor necrosis. Others were monitored for tumor growth and survival. Analyses of variance and log-rank tests were used to evaluate differences. RESULTS: When associated with mild hyperthermia, Dbait induced cytotoxicity in all tested colon cancer cell lines. Sublethal RFA or Dbait treatment alone moderately improved survival (median, 40 days vs 28 days for control; P = .0005) but combination treatment significantly improved survival (median, 84 days vs 40 days for RFA alone, P = .0004), with approximately half of the animals showing complete tumor responses. Pathologic studies showed that the Dbait and RFA combination strongly enhances DNA damage and coagulation areas in tumors. CONCLUSION: Combining Dbait with RFA sensitizes the tumor periphery to mild hyperthermia and increases RFA antitumor efficacy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Ablação por Cateter , Neoplasias Colorretais/patologia , Reparo do DNA/efeitos dos fármacos , Hipertermia Induzida , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Oligodesoxirribonucleotídeos/farmacologia , Adenocarcinoma/patologia , Animais , Dano ao DNA/efeitos dos fármacos , Humanos , Camundongos , Células Tumorais Cultivadas
11.
PLoS One ; 8(11): e80313, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282534

RESUMO

The DNA-dependent protein kinase (DNA-PK) may function as a key signaling kinase in various cellular pathways other than DNA repair. Using a two-dimensional gel electrophoresis approach and stable DNA double-strand break-mimicking molecules (Dbait32Hc) to activate DNA-PK in the nucleus and cytoplasm, we identified 26 proteins that were highly phosphorylated following DNA-PK activation. Most of these proteins are involved in protein stability and degradation, cell signaling and the cytoskeleton. We investigated the relationship between DNA-PK and the cytoskeleton and found that the intermediate filament (IF) vimentin was a target of DNA-PK in vitro and in cells. Vimentin was phosphorylated at Ser459, by DNA-PK, in cells transfected with Dbait32Hc. We produced specific antibodies and showed that Ser459-P-vimentin was mostly located at cell protrusions. In migratory cells, the vimentin phosphorylation induced by Dbait32Hc was associated with a lower cellular adhesion and migration capacity. Thus, this approach led to the identification of downstream cytoplasmic targets of DNA-PK and revealed a connection between DNA damage signaling and the cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dano ao DNA , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência , Vimentina/metabolismo
12.
Nucleic Acids Res ; 41(15): 7344-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761435

RESUMO

One of the major early steps of repair is the recruitment of repair proteins at the damage site, and this is coordinated by a cascade of modifications controlled by phosphatidylinositol 3-kinase-related kinases and/or poly (ADP-ribose) polymerase (PARP). We used short interfering DNA molecules mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) to promote DNA-dependent protein kinase (DNA-PK) and PARP activation. Dbait bound and induced both PARP and DNA-PK activities, whereas Pbait acts only on PARP. Therefore, comparative study of the two molecules allows analysis of the respective roles of the two signaling pathways: both recruit proteins involved in single-strand break repair (PARP, XRCC1 and PCNA) and prevent their recruitment at chromosomal damage. Dbait, but not Pbait, also inhibits recruitment of proteins involved in double-strand break repair (53BP1, NBS1, RAD51 and DNA-PK). By these ways, Pbait and Dbait disorganize DNA repair, thereby sensitizing cells to various treatments. Single-strand breaks repair inhibition depends on direct trapping of the main proteins on both molecules. Double-strand breaks repair inhibition may be indirect, resulting from the phosphorylation of double-strand breaks repair proteins and chromatin targets by activated DNA-PK. The DNA repair inhibition by both molecules is confirmed by their synthetic lethality with BRCA mutations.


Assuntos
Dano ao DNA , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Sequência de Bases , Benzimidazóis/farmacologia , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/genética , Ativação Enzimática , Genoma Humano , Células HeLa , Humanos , Proteínas Nucleares/genética , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética
13.
PLoS One ; 7(7): e40567, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815765

RESUMO

BACKGROUND: Glioma is the most aggressive tumor of the brain and the most efficient treatments are based on radiotherapy. However, tumors are often resistant to radiotherapy due to an enhanced DNA repair activity. Short and stabilized DNA molecules (Dbait) have recently been proposed as an efficient strategy to inhibit DNA repair in tumor. METHODOLOGY/PRINCIPAL FINDINGS: The distribution of three formulations of Dbait, (i) Dbait alone, (ii) Dbait associated with polyethylenimine, and (iii) Dbait linked with cholesterol (coDbait), was evaluated one day after intratumoral delivery in an RG2 rat glioma model. Dbait molecule distribution was assessed in the whole organ with 2D-FRI and in brain sections. CoDbait was chosen for further studies given its good retention in the brain, cellular localization, and efficacy in inducing the activation of DNA repair effectors. The radiosensitizing effect of coDbait was studied in four groups of rats bearing RG2-glioma: no treatment, radiotherapy only, coDbait alone, and CoDbait with radiotherapy. Treatment started 7 days after tumor inoculation and consisted of two series of treatment in two weeks: coDbait injection followed by a selective 6-Gy irradiation of the head. We evaluated the radiosensitizing effect using animal survival, tumor volume, cell proliferation, and vasculature characteristics with multiparametric MRI. CoDbait with radiotherapy improved the survival of rats bearing RG2-glioma by reducing tumor growth and cell proliferation without altering tumor vasculature. CONCLUSION/SIGNIFICANCE: coDbait is therefore a promising molecular therapy to sensitize glioma to radiotherapy.


Assuntos
Colesterol/metabolismo , DNA/metabolismo , DNA/farmacologia , Glioblastoma/patologia , Radiossensibilizantes/metabolismo , Radiossensibilizantes/farmacologia , Animais , Transporte Biológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Química Farmacêutica , DNA/efeitos adversos , DNA/química , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Progressão da Doença , Glioblastoma/irrigação sanguínea , Glioblastoma/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos da radiação , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Neostriado/efeitos da radiação , Neovascularização Patológica , Polietilenoimina/química , Radiossensibilizantes/efeitos adversos , Radiossensibilizantes/química , Ratos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
14.
J Biol Chem ; 287(12): 8803-15, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22270370

RESUMO

DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Choque Térmico HSP90/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Camundongos , Camundongos Nus , Fosforilação , Ratos
15.
Mol Ther Nucleic Acids ; 1: e33, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23344149

RESUMO

Increased DNA repair activity in cancer cells is one of their primary mechanisms of resistance to current radio- and chemotherapies. The molecule coDbait is the first candidate in a new class of drugs that target the double-strand DNA break repair pathways with the aim of overcoming these resistances. coDbait is a 32-base pair (bp) double-stranded DNA molecule with a cholesterol moiety covalently attached to its 5'-end to facilitate its cellular uptake. We report here the preclinical pharmacokinetic and toxicology studies of subcutaneous coDbait administration in rodents and monkeys. Maximum plasma concentration occurred between 2 to 4 hours in rats and at 4 hours in monkeys. Increase in mean AUC0-24h was linear with dose reaching 0.5 mg·h/ml for the highest dose injected (32 mg) for both rats and monkeys. No sex-related differences in maximum concentration (Cmax) nor AUC0-24h were observed. We extrapolated these pharmacokinetic results to humans as the subcutaneous route has been selected for evaluation in clinical trials. Tri-weekly administration of coDbait (from 8 to 32 mg per dose) for 4 weeks was overall well tolerated in rats and monkeys as no morbidity/mortality nor changes in clinical chemistry and histopathology parameters considered to be adverse effects have been observed.

16.
Surg Endosc ; 26(3): 847-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22042585

RESUMO

BACKGROUND: Peritoneal carcinomatosis is an unmet medical need. Laparoscopy offers a unique opportunity to control and to steer the operating environment during surgery by loading carbon dioxide with a therapeutic substance and creating the so-called therapeutic capnoperitoneum. We have treated a human sample of peritoneal carcinomatosis from an endometrial adenocarcinoma ex vivo just after surgery. METHODS: A nontoxic therapeutic agent (Dbait) was aerosolized into a box containing diseased human peritoneum under a pressure of 12 mmHg CO(2). Dbait (noncoding DNA fragments) acts through jamming DNA damage sensing and signaling, ultimately inhibiting DNA repair system of cancer cells. Dbait were coupled to cholesterol molecules to facilitate intracellular uptake, and to Cyanine (Cy5) to allow detection by fluorescence. In a control experiment, the same solution was applied to the other half of the sample using conventional lavage. RESULTS: Physical results revealed fluorescence within the tumor up to 1 mm depth in the therapeutic capnoperitoneum sample and no uptake in the lavage sample. Biological results showed intranuclear phosphorylation of H2AX in the nebulized sample and no activity in the lavage sample. Importantly, tumor nodules showed more activity than the neighbor, normal peritoneum. Detection of histone gamma-H2AX (phosphorylated H2AX) reveals activation of DNA-dependent protein kinase (DNA-PK) by Dbait, which has been shown to be the key step for sensitization to genotoxic therapy. CONCLUSIONS: Dbait are taken up by cancer cells and have a biological activity up to 1 mm depth. Nebulization of the molecule is significantly more effective than conventional lavage. This proof of principle supports the need for clinical studies applying therapeutic capnoperitoneum together with Dbait for treating peritoneal carcinomatosis.


Assuntos
Antineoplásicos/administração & dosagem , Dióxido de Carbono/administração & dosagem , Carcinoma/terapia , Neoplasias Peritoneais/terapia , Pneumoperitônio Artificial/métodos , RNA Interferente Pequeno/administração & dosagem , Adenocarcinoma/terapia , Adulto , Aerossóis , Carbocianinas , Terapia Combinada , Neoplasias do Endométrio/terapia , Desenho de Equipamento , Feminino , Fluorescência , Corantes Fluorescentes , Histonas/metabolismo , Humanos , Laparoscopia/métodos
17.
J Gastroenterol ; 47(3): 266-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22068457

RESUMO

BACKGROUND: Dbait molecules are a new class of DNA repair inhibitors triggering false DNA damage signaling in cancer cells. Dbait has already been shown to be effective in combination with radiotherapy. The aim of this study was to assess the adjuvant impact of Dbait on chemotherapy in vitro and in mouse models of colorectal cancer. METHODS: We assessed DNA repair efficiency over time, in vitro, in human colon adenocarcinoma HT-29 (wild-type KRAS) and HCT-116 (mutated KRAS) cell lines treated with Dbait in combination with 5-fluorouracil and/or camptothecin. Genetically engineered mice spontaneously developing colorectal tumors in the intestines were selected for the evaluation of treatment efficacy. RESULTS: Dbait delayed the repair of DNA damage induced by chemotherapy in vitro. In APC (+/1638N) mutant mice, the combination of Dbait and chemotherapy decreased tumor size more effectively than chemotherapy alone (median size: 3.6 vs. 10.85 mm(2), P < 0.05). In APC (+/1638N)/KRAS ( V12G ) mutant mice, animals treated with a combination of Dbait and chemotherapy survived significantly longer than animals treated by chemotherapy alone (median survival: 210 vs. 194 days, P < 0.05). A quarter of all the animals treated by chemotherapy alone died as rapidly as untreated animals, whereas the first death was delayed by 29 days by the addition of Dbait. No increase in toxicity due to Dbait was observed in either mouse model. CONCLUSIONS: The use of Dbait to inhibit DNA repair may be an effective additional treatment for increasing the efficacy of chemotherapy in colon or rectal cancer, independently of KRAS status.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Reparo do DNA/efeitos dos fármacos , Adenocarcinoma/patologia , Animais , Camptotecina/administração & dosagem , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Dano ao DNA/efeitos dos fármacos , Fluoruracila/administração & dosagem , Engenharia Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo , Proteínas ras/genética
18.
Clin Cancer Res ; 15(4): 1308-16, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19190126

RESUMO

PURPOSE: Enhanced DNA repair activity is often associated with tumor resistance to radiotherapy. We hypothesized that inhibiting DNA damage repair would sensitize tumors to radiation-induced DNA damage. EXPERIMENTAL DESIGN: A novel strategy for inhibiting DNA repair was tested. We designed small DNA molecules that mimic DNA double-strand breaks (called Dbait) and act by disorganizing damage signaling and DNA repair. We analyzed the effects of Dbait in cultured cells and on xenografted tumors growth and performed preliminary studies of their mechanism(s) of action. RESULTS: The selected Dbait molecules activate H2AX phosphorylation in cell culture and in xenografted tumors. In vitro, this activation correlates with the reduction of Nijmegen breakage syndrome 1 and p53-binding protein 1 repair foci formation after irradiation. Cells are sensitized to irradiation and do not efficiently repair DNA damage. In vivo, Dbait induces regression of radioresistant head and neck squamous cell carcinoma (Hep2) and melanoma (SK28 and LU1205) tumors. The combination of Dbait32Hc treatment and fractionated radiotherapy significantly enhanced the therapeutic effect. Tumor growth control by Dbait molecules depended directly on the dose and was observed with various irradiation protocols. The induction of H2AX phosphorylation in tumors treated with Dbait suggests that it acts in vivo through the induction of "false" DNA damage signaling and repair inhibition. CONCLUSIONS: These data validate the concept of introducing small DNA molecules, which mimic DNA damage, to trigger "false" signaling of DNA damage and impair DNA repair of damaged chromosomes. This new strategy could provide a new method for enhancing radiotherapy efficiency in radioresistant tumors.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Neoplasias/radioterapia , Radiossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Histonas/metabolismo , Humanos , Camundongos , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Cancer ; 6: 20, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16433901

RESUMO

BACKGROUND: Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static "contact first" model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic "breakage first" model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. METHODS: Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. RESULTS: In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static "contact first" model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. CONCLUSION: The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static "contact first" model of translocation. The recently proposed dynamic "breakage first" model offers an attractive alternative explanation.


Assuntos
Núcleo Celular/química , Proteínas de Ligação a DNA/genética , Genes , Imageamento Tridimensional , Hibridização in Situ Fluorescente/métodos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Linhagem Celular Transformada/química , Linhagem Celular Transformada/ultraestrutura , Linhagem Celular Tumoral/química , Linhagem Celular Tumoral/ultraestrutura , Núcleo Celular/ultraestrutura , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 11/ultraestrutura , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/ultraestrutura , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Par 4/ultraestrutura , Células HL-60/química , Células HL-60/ultraestrutura , Herpesvirus Humano 4 , Histona-Lisina N-Metiltransferase , Humanos , Interfase , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/patologia , Masculino , Modelos Genéticos , Mieloma Múltiplo/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Fatores de Elongação da Transcrição , Translocação Genética
20.
J Cell Biochem ; 96(3): 611-21, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16088957

RESUMO

The expression of casein genes is specific to the mammary gland and maximal during lactation. However, among the numerous mammary cell lines described so far, only a few express some casein genes. The regulatory regions of casein genes have been largely described but the mechanisms explaining the mammary specific expression of these genes, and their silencing in most mammary cell lines, have not yet been fully elucidated. To test the hypothesis that the nuclear location of the casein genes may affect their expression, we transfected HC11 mouse mammary cell line with a 100 kb DNA fragment surrounding the rabbit alpha S1 casein gene. We derived stable clones which express or not the transfected rabbit casein gene, in the same cellular context, independently of the number of transgene copies. Metaphase spreads were prepared from the different clones and the transfected genes were localized. Unexpectedly, we observed that in the original HC11 cell line the number of chromosomes per metaphase spread is close to 80, suggesting that HC11 cells have undergone a duplication event, since the mouse karyotype is 2n = 40. In alpha S1 casein expressing cells, the expression level does not clearly correlate with a localization of the transfected DNA proximal to the centromeres or the telomeres. Analysis of the localization of the transfected DNA in nuclear halos allows us to conclude that when expressed, transfected DNA is more closely linked to the nuclear matrix. The next step will be to study the attachment of the endogenous casein gene in mammary nuclei during lactation.


Assuntos
Caseínas/genética , Caseínas/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Matriz Nuclear/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromossomos , DNA/metabolismo , Células Epiteliais/citologia , Feminino , Dosagem de Genes , Hibridização In Situ , Camundongos , Coelhos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA