Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1141631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937746

RESUMO

Phototherapy, which generally refers to photothermal therapy (PTT) and photodynamic therapy (PDT), has received significant attention over the past few years since it is non-invasive, has effective selectivity, and has few side effects. As a result, it has become a promising alternative to traditional clinical treatments. At present, two-dimensional materials (2D materials) have proven to be at the forefront of the development of advanced nanomaterials due to their ultrathin structures and fascinating optical properties. As a result, much work has been put into developing phototherapy platforms based on 2D materials. This review summarizes the current developments in 2D materials beyond graphene for phototherapy, focusing on the novel approaches of PTT and PDT. New methods are being developed to go above and beyond conventional treatment to fully use the potential of 2D materials. Additionally, the efficacy of cutting-edge phototherapy is assessed, and the existing difficulties and future prospects of 2D materials for phototherapy are covered.

2.
Oral Dis ; 29(3): 1184-1196, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34874590

RESUMO

OBJECTIVES: The objectives of this study were to explore the role and related mechanism of berberine in repairing bone destruction in apical periodontics (AP). MATERIALS AND METHODS: AP was established in 14 of 21 male Wistar rats (four weeks of age; 70-80 g) for 3 weeks. The canals were cleaned and administered berberine (2 mg/ml; n = 7) or calcium hydroxide (100 mg/ml; control; n = 7), followed by glass ionomer cement sealing. After 3 weeks, specimen collection followed by micro-computed tomography (µ-CT) and histological staining was performed, including haematoxylin and eosin staining, Masson's trichrome staining, tartrate-resistant acid phosphatase staining, immunohistochemistry and immunofluorescence histochemistry. RESULTS: µ-CT showed that AP lesion volume reduced in the berberine group. Histopathology showed that berberine decreased the activity and number of osteoclasts but increased the expression of proteins related to osteoblast differentiation, including alkaline phosphatase and osterix. The immune cell, T cell, dendritic cell and macrophage counts were significantly decreased in the berberine group. In the berberine group, the expression of extracellular matrix-degraded proteases, metalloproteinases, was decreased; however, that of extracellular matrix-stable proteases, lysyl oxidases, was increased. CONCLUSIONS: Berberine controlled the inflammatory response and regulated bone metabolism in AP by reducing metalloproteinase expression and increasing lysyl oxidases expression.


Assuntos
Berberina , Periodontite Periapical , Ratos , Animais , Masculino , Berberina/farmacologia , Ratos Wistar , Microtomografia por Raio-X , Periodontite Periapical/metabolismo , Osteoclastos/patologia , Matriz Extracelular/metabolismo , Oxirredutases
3.
Int J Biol Sci ; 18(3): 1303-1312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173554

RESUMO

Slit/Robo signals were initially found to play an essential role in nerve development as axonal guidance molecules. In recent years, with in-depth study, the role of Slit/Robo in other life activities, such as tumor development, angiogenesis, cell migration, and bone homeostasis, has gradually been revealed. Bone is an organ with an active metabolism. Bone resorption and bone formation are closely related through precise spatiotemporal coordination. There is much evidence that slit, as a new bone coupling factor, can regulate bone formation and resorption. For example, Slit3 can promote bone formation and inhibit bone resorption through Robo receptors, which has excellent therapeutic potential in metabolic bone diseases. Although the conclusions of some studies are contradictory, they all affirm the vital role of Slit/Robo signaling in regulating bone metabolism. This paper reviews the research progress of Slit/Robo signaling in bone metabolism, briefly discusses the contradictions in the existing research, and puts forward the research direction of Slit/Robo in the field of bone metabolism in the future.


Assuntos
Reabsorção Óssea , Receptores Imunológicos , Movimento Celular , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais
4.
J Endod ; 47(10): 1631-1639, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34126161

RESUMO

INTRODUCTION: Semaphorin 7A (SEMA7A) is a membrane-bound or secretory protein exerting multiple functions in the regulation of inflammation, neural degradation, and cancer progression. Human periapical lesions are chronic and infectious diseases mainly caused by bacteria. However, the involvement of SEMA7A in human periapical lesions is still unclear. This study aimed to explore the expression of SEMA7A in human periapical lesions accompanied by the potential association of SEMA7A with matrix metalloproteinase (MMP)-1 and MMP-3 during the progression of apical periodontitis. METHODS: Samples of periapical lesions and healthy controls were collected. Total RNA and protein were extracted respectively for quantitative real-time polymerase chain reaction and Western blot analysis. Additionally, 6 healthy samples and 27 periapical lesion samples were fixed, dehydrated, and embedded for further histologic and immunochemical analysis. The expression of SEMA7A was quantified by average integrated optical density. Immunofluorescence analysis was conducted to explore the colocalization of SEMA7A/MMP-1 and SEMA7A/MMP-3. RESULTS: Compared with healthy controls, the messenger RNA and protein expression of SEMA7A was markedly up-regulated in periapical lesions. A stronger expression of MMP-1, MMP-3, and inflammatory cytokines was exhibited in periapical lesions than in healthy groups. An increasing expression of SEMA7A can be observed in both the periapical granuloma group and the radicular cyst group compared with the normal group (P < .01). Immunofluorescence results showed the colocalization of SEMA7A with both MMP-1 and MMP-3 in vascular vessels and extracellular matrix. CONCLUSIONS: SEMA7A was up-regulated in periapical periodontitis and might be involved in the tissue destruction and infiltration of immune cells in periapical lesions.


Assuntos
Granuloma Periapical , Periodontite Periapical , Cisto Radicular , Semaforinas , Antígenos CD , Proteínas Ligadas por GPI , Humanos , Inflamação , Semaforinas/genética
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 416-422, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34018359

RESUMO

OBJECTIVE: To investigate the influence of Runt-related transcription factor 1 (RUNX1) on the proliferation, osteogenic differentiation and adipogenic differentiation of dental pulp stem cells (DPSC) in vitro. METHODS: DPSCs were transfected through lentiviral vector carrying the target gene RUNX1 and green fluorescent protein (GFP). After 48 h, transfection efficiency was determined with the fluorescent marking of GFP and Western blot. The effect of the overexpression of RUNX1 on DPSC proliferation and colony formation was determined with CCK-8 and colony formation assay; cell cycle of DPSC was detected by flow cytometry. RUNX1 siRNA was transfected into the DPSCs. After mineralized induction, the effect of RUNX1 overexpression/silencing on the osteogenetic differentiation of DPSC was tested by alkaline phosphatase (ALP) staining and alizarin red staining. After adipogenic induction, oil red O staining was done in order to observe the effect of overexpression/silencing of RUNX1 on the adipogenic differentiation of DPSC. RESULTS: RUNX1 protein was overexpressed in DPSC after lentiviral transfection. Fluorescent test showed successful transfection of lentiviral transfection and over 70% of the cells showed stable expression of GFP protein. The proliferation and colony-formation efficiency of DPSC was enhanced significantly and the proportion of DPSCs in the S phase was significantly increased in the RUNX1-overexpessed group ( P<0.05). ALP activity and mineralized nodule formation ability increased, while lipid droplets decreased in the RUNX1-overexpessed group ( P<0.05). ALP activity and mineralized nodule formation ability decreased, while lipid droplets increased in the RUNX1 knockdown group ( P<0.05) . CONCLUSION: RUNX1 promotes DPSC proliferation and osteogenic differentiation while it inhibits DPSC adipogenic differentiation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Polpa Dentária , Células-Tronco
6.
Int J Biol Macromol ; 167: 1198-1210, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33202273

RESUMO

Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of dentistry due to its functional versatility and ease of access. Recent studies find that chitosan and its derivatives can be embedded in materials for dental adhesives, barrier membranes, bone replacement, tissue regeneration, and antimicrobial agent to better manage oral diseases. In this paper, we provide a comprehensive overview on the preparation, applications, and major breakthroughs of chitosan biomaterials. Furthermore, incorporation of chitosan additives for the modification and improvement of dental materials has been discussed in depth to promote more advanced chitosan-related research in the future.


Assuntos
Anti-Infecciosos/química , Materiais Biocompatíveis/química , Quitosana/química , Odontologia/métodos , Engenharia Tecidual/métodos , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/síntese química , Endodontia/métodos , Humanos , Periodontia/métodos , Odontologia Preventiva/métodos , Próteses e Implantes , Prostodontia/métodos , Doenças Estomatognáticas , Cirurgia Bucal/métodos , Cicatrização
7.
Int J Oral Sci ; 12(1): 17, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532966

RESUMO

Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell-cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.


Assuntos
Comunicação Celular , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Doenças da Boca , Osso e Ossos , Conexinas/fisiologia , Junções Comunicantes/patologia , Homeostase/fisiologia , Humanos , Fosforilação
8.
Mol Cell Biol ; 35(16): 2875-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055330

RESUMO

Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3' untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization.


Assuntos
Ameloblastos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Esmalte Dentário/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Regiões 3' não Traduzidas , Ameloblastos/citologia , Amelogênese , Animais , Linhagem Celular , Esmalte Dentário/ultraestrutura , Humanos , Camundongos , Dente/citologia , Dente/crescimento & desenvolvimento , Dente/metabolismo , Regulação para Cima
9.
Sci Rep ; 5: 9903, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25952286

RESUMO

Odontogenesis is accomplished by reciprocal signaling between the epithelial and mesenchymal compartments. It is generally accepted that the inductive mesenchyme is capable of inducing the odontogenic commitment of both dental and non-dental epithelial cells. However, the duration of this signal in the developing dental mesenchyme and whether adult dental pulp tissue maintains its inductive capability remain unclear. This study investigated the contribution of growth factors to regulating the inductive potential of the dental mesenchyme. Human oral epithelial cells (OEs) were co-cultured with either human dental mesenchymal/papilla cells (FDPCs) or human dental pulp cells (ADPCs) under 2-dimensional or 3-dimensional conditions. Odontogenic-associated genes and proteins were detected by qPCR and immunofluorescence, respectively, and significant differences were observed between the two co-culture systems. The BMP7 and EREG expression levels in FDPCs were significantly higher than in ADPCs, as indicated by human growth factor PCR arrays and immunofluorescence analyses. OEs co-cultured with ADPCs supplemented with BMP7 and EREG expressed ameloblastic differentiation genes. Our study suggests that BMP7 and EREG expression in late bell-stage human dental papilla contributes to the inductive potential of dental mesenchyme. Furthermore, adult dental pulp cells supplemented with these two growth factors re-established the inductive potential of postnatal dental pulp tissue.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Epirregulina/farmacologia , Mesoderma/efeitos dos fármacos , Mesoderma/embriologia , Odontogênese/efeitos dos fármacos , Amelogenina/genética , Técnicas de Cultura de Células , Diferenciação Celular , Análise por Conglomerados , Técnicas de Cocultura , Proteínas do Esmalte Dentário/genética , Papila Dentária/citologia , Papila Dentária/embriologia , Papila Dentária/metabolismo , Polpa Dentária/citologia , Polpa Dentária/embriologia , Polpa Dentária/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Mesoderma/citologia , Fator de Transcrição PAX9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA