Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132998, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866290

RESUMO

Paclitaxel, a diterpenoid isolated from the bark of Taxus wallichiana var. chinensis (Pilger) Florin, is currently showing significant therapeutic effects against a variety of cancers. Baccatin III (Bac) and 10-Deacetylbaccatin III (10-DAB) are in great demand as important precursors for the synthesis of paclitaxel. This work aims to develop a simple, rapid and highly selective, safe, and non-polluting molecularly imprinted material for 10-DAB and Bac enrichment. In this study, we innovatively prepared molecularly imprinted materials with nanocellulose aerogel microspheres and 2-vinylpyridine (2-VP) as a bifunctional monomer, and 10-DAB and Bac as bis-template molecules. In particular, functionalized nanocellulose dual-template molecularly imprinted aerogel microsphere (FNCAG-DMIM) were successfully synthesized by the bifunctional introduction of functional nanocellulose aerogel microsphere (FNCAG) modified with Polyethyleneimine (PEI) as a carrier and functional monomer, which provided a large number of recognition sites for bimodal molecules. FNCAG-DMIM showed high specificity for 10-DAB and Bac specific assays. Under the optimal experimental conditions, the adsorption capacities of FNCAG-DMIM for 10-DAB and Bac reached 52.27 mg g-1 and 53.81 mg g-1, respectively. In addition, it showed good reliability and practicality in the determination of real samples. The present study extends the research on the synthesis of natural functional monomers by molecularly imprinted materials and opens up new horizons for the targeted isolation of plant compounds by dual-template molecularly imprinted materials.


Assuntos
Celulose , Géis , Microesferas , Impressão Molecular , Celulose/química , Celulose/análogos & derivados , Géis/química , Impressão Molecular/métodos , Adsorção , Taxoides/química
2.
Fitoterapia ; 175: 105842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38296168

RESUMO

Pinolenic acid is a polyunsaturated fatty acid present only in Pinus koraiensis Sieb. et Zucc seed oil. In order to solve the structural instability problem of polyunsaturated fatty acids, pinolenic acid of P. koraiensis seed oil was effectively isolated and purified by the integrated strategy of ethyl esterification followed by urea inclusion for the first time. Under the optimal conditions after the Box-Benhnken Design experimental, ethyl pinolenate with high purity 94.95% could be obtained, and the average content of PNAEE can still reach 86.18%. Then ethyl pinolenate was characterized by Gas chromatography-mass spectrometry, Fourier transform infrared, and Nuclear magnetic resonance spectra, results showed that ethyl pinolenate was successfully prepared. In addition, the hypolipidemic activity of ethyl pinolenate had been tested in vivo and showed that ethyl pinolenate had obvious hypolipidemic activity. The new strategy for high purity ethyl pinolenate production from P. koraiensis seed oil possesses great potential in food healthy field in the future.


Assuntos
Hipolipemiantes , Pinus , Óleos de Plantas , Sementes , Pinus/química , Sementes/química , Hipolipemiantes/farmacologia , Hipolipemiantes/isolamento & purificação , Hipolipemiantes/química , Animais , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Masculino , Ácidos Linolênicos/farmacologia , Ácidos Linolênicos/isolamento & purificação , Estrutura Molecular , Camundongos
3.
Materials (Basel) ; 12(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816839

RESUMO

In order to match the solid food oxidation during logistics and storage process under severe high temperature, a double-switch temperature-sensitive controlled release antioxidant film embedded with lyophilized nanoliposomes encapsulating rosemary essential oils (REOs) was prepared. The double switch temperature at 35.26 and 56.98 °C was achieved by development of a temperature sensitive polyurethane (TSPU) film. With biaxially oriented polyethylene terephthalate (BOPET) as a barrier layer, the intelligent complex film was prepared via coating the TSPU embedded with lyophilized nanoliposomes encapsulating REOs on BOPET. The results indicate that the REO is well encapsulated in nanoliposomes with encapsulation efficiency (EE) of 67.3%, high stability and lasting antioxidant effect during 60 days. The incorporation of lyophilized nanoliposomes containing REOs into TSPU remains the double-switch temperature-sensitive characteristic of the prepared TSPU. In agreement with porosity and WVTR results, the diffusion coefficient (D) of the antioxidant complex film sharply increases respectively at two switching temperatures, indicating that the intelligent double-switch temperature-sensitive controlled release property is functioning. Furthermore, compared with films directly added with REO, the lower Ds of films added with lyophilized nanoliposomes encapsulating REOs provides a longer-lasting antioxidant activity. Thus, the acquired controlled release antioxidant film sensitive to temperature at 39.56 and 56.00 °C can be potentially applied for protection of solid food during distribution and storage process under severe high temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA