Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(5): 2250-2255, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33517656

RESUMO

Metal fluoride nanocrystals are widely used in biomedical studies owing to their unique physicochemical properties. The release of metal ions and fluorides from nanocrystals is intrinsic due to the solubility equilibrium. It used to be considered as a drawback because it is related to the decomposition and defunction of metal fluoride nanocrystals. Many strategies have been developed to stabilize the nanocrystals, and the equilibrium concentrations of fluoride are often <1 mM. Here we make good use of this minimum amount of fluoride and unveil that metal fluoride nanocrystals could effectively induce desilylation cleavage chemistry, enabling controlled release of fluorophores and drug molecules in test tubes, living cells, and tumor-bearing mice. Biocompatible PEG (polyethylene glycol)-coated CaF2 nanocrystals have been prepared to assay the efficiency of desilylation-induced controlled release of functional molecules. We apply the strategy to a prodrug activation of monomethyl auristatin E (MMAE), showing a remarkable anticancer effect, while side effects are almost negligible. In conclusion, this desilylation-induced cleavage chemistry avails the drawback on empowering metal fluoride nanocrystals with a new function of perturbing or activating for further biological applications.


Assuntos
Fluoretos/química , Metais/química , Nanopartículas/química , Compostos de Organossilício/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Polietilenoglicóis/química , Solubilidade
2.
Angew Chem Int Ed Engl ; 60(3): 1212-1219, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-32978789

RESUMO

RuII compounds are widely used in catalysis, photocatalysis, and medical applications. They are usually obtained in a reductive environment as molecular O2 can oxidize RuII to RuIII and RuIV . Here we report the design, identification and evolution of an air-stable surface [bipy-RuII (CO)2 Cl2 ] site that is covalently mounted onto a polyphenylene framework. Such a RuII site was obtained by reduction of [bipy-RuIII Cl4 ]- with simultaneous ligand exchange from Cl- to CO. This structural evolution was witnessed by a combination of in situ X-ray and infrared spectroscopy studies. The [bipy-RuII (CO)2 Cl2 ] site enables oxidation of CO with a turnover frequency of 0.73×10-2  s-1 at 462 K, while the RuIII site is completely inert. This work contributes to the study of structure-activity relationship by demonstrating a practical control over both geometric and electronic structures of single-site catalysts at molecular level.

3.
J Am Chem Soc ; 142(31): 13362-13371, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658462

RESUMO

Apart from active metals, supports also contribute significantly to the catalytic performance of supported metal catalysts. On account of the formed strain and defects, the heterostructured surface of the support may play a crucial role to activate the reactant molecules, while it is usually neglected. In this work, the Pt/γ-Mo2N catalyst was prepared via a facile solution method. This Pt/γ-Mo2N catalyst showed excellent activity and stability for catalyzing the water-gas shift (WGS) reaction. The reaction rates at 240 °C were 16.5 molCO molPt-1s-1 in product-free gas and 5.36 molCO molPt-1 s-1 in full reformate gas, which were almost 20 times that of the catalysts reported. It is found that the molybdenum species in the surface of the Pt/γ-Mo2N catalyst is molybdenum oxide as MoO3. This surface MoO3 is very easily reduced even at room temperature, and it transformed into highly distorted MoOx (2 < x < 3) in the WGS reaction. The MoOx on the catalyst surface greatly enhanced the capability of generating active oxygen vacancies to dissociate H2O molecules, which induced unexpectedly superior catalytic performance. Therefore, the intrinsically active surface in the Pt/γ-Mo2N catalyst for the WGS reaction was molybdenum oxide as MoOx (2 < x < 3).

4.
J Am Chem Soc ; 142(8): 3939-3946, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31968933

RESUMO

Metal-organic frameworks (MOFs) have shown great potential as nanophotosensitizers (nPSs) for photodynamic therapy (PDT). The use of such MOFs in PDT, however, is limited by the shallow depth of tissue penetration of short-wavelength light and the oxygen-dependent mechanism that renders it inadequate for hypoxic tumors. Here, to combat such limitations, we rationally designed core-shell upconversion nanoparticle@porphyrinic MOFs (UCSs) for combinational therapy against hypoxic tumors. The UCSs were synthesized in high yield through the conditional surface engineering of UCNPs and subsequent seed-mediated growth strategy. The heterostructure allows efficient energy transfer from the UCNP core to the MOF shell, which enables the near-infrared (NIR) light-triggered production of cytotoxic reactive oxygen species. A hypoxia-activated prodrug tirapazamine (TPZ) was encapsulated in nanopores of the MOF shell of the heterostructures to yield the final construct TPZ/UCSs. We demonstrated that TPZ/UCSs represent a promising system for achieving improved cancer treatment in vitro and in vivo via the combination of NIR light-induced PDT and hypoxia-activated chemotherapy. Furthermore, the integration of the nanoplatform with antiprogrammed death-ligand 1 (α-PD-L1) treatment promotes the abscopal effect to completely inhibit the growth of untreated distant tumors by generating specific tumor infiltration of cytotoxic T cells. Collectively, this work highlights a robust nanoplatform for combining NIR light-triggered PDT and hypoxia-activated chemotherapy with immunotherapy to combat the current limitations of tumor treatment.


Assuntos
Antineoplásicos/uso terapêutico , Hipóxia Celular , Imunoterapia , Raios Infravermelhos , Estruturas Metalorgânicas/química , Neoplasias/terapia , Animais , Terapia Combinada , Humanos , Camundongos , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico
5.
J Am Chem Soc ; 141(11): 4613-4623, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807152

RESUMO

The crucial role of the metal-oxide interface in the catalysts of the water-gas shift (WGS) reaction has been recognized, while the precise illustration of the intrinsic reaction at the interfacial site has scarcely been presented. Here, two kinds of gold-ceria catalysts with totally distinct gold species, <2 nm clusters and 3 to 4 nm particles, were synthesized as catalysts for the WGS reaction. We found that the gold cluster catalyst exhibited a superiority in reactivity compared to gold nanoparticles. With the aid of comprehensive in situ characterization techniques, the bridged -OH groups that formed on the surface oxygen vacancies of the ceria support are directly determined to be the sole active configuration among various surface hydroxyls in the gold-ceria catalysts. The isotopic tracing results further proved that the reaction between bridged surface -OH groups and CO molecules adsorbed on interfacial Au atoms contributes dominantly to the WGS reactivity. Thus, the abundant interfacial sites in gold clusters on the ceria surface induced superior reactivity compared to that of supported gold nanoparticles in catalyzing the WGS reaction. On the basis of direct and solid experimental evidence, we have obtained a very clear image of the surface reaction for the WGS reaction catalyzed by the gold-ceria catalyst.

6.
J Am Chem Soc ; 139(39): 13804-13810, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28899098

RESUMO

Creating nanoparticle dimers has attracted extensive interest. However, it still remains a great challenge to synthesize heterodimers with asymmetric compositions and synergistically enhanced functions. In this work, we report the synthesis of high quality heterodimers composed of porphyrinic nanoscale metal-organic frameworks (nMOF) and lanthanide-doped upconversion nanoparticles (UCNPs). Due to the dual optical properties inherited from individual nanoparticles and their interactions, absorption of low energy photons by the UCNPs is followed by energy transfer to the nMOFs, which then undergo activation of porphyrins to generate singlet oxygen. Furthermore, the strategy enables the synthesis of heterodimers with tunable UCNP size and dual NIR light harvesting functionality. We demonstrated that the hybrid architectures represent a promising platform to combine NIR-induced photodynamic therapy and chemotherapy for efficient cancer treatment. We believe that such heterodimers are capable of expanding their potential for applications in solar cells, photocatalysis, and nanomedicine.

7.
ACS Nano ; 10(2): 2766-73, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26794807

RESUMO

Upconversion (UC) luminescent lanthanide nanoparticles (LNPs) are expected to play an important role in imaging and photodynamic therapy (PDT) in vitro and in vivo. However, with the absorption of UC emissions by photosensitizers (PSs) to generate singlet oxygen ((1)O2) for PDT, the imaging signals from LNPs are significantly weakened. It is important to activate another imaging route to track the location of the LNPs during PDT process. In this work, Nd(3+)-sensitized LNPs with dual-band visible and near-infrared (NIR) emissions under single 808 nm excitation were reported to address this issue. The UC emissions in green could trigger covalently linked rose bengal (RB) molecules for efficient PDT, and NIR emissions deriving from Yb(3+) and magnetic resonance imaging (MRI) were used for imaging simultaneously. Notably, the designed therapeutic platform could further effectively avoid the overheating effect induced by the laser irradiation, due to the minimized absorption of biological media at around 808 nm. TdT-mediated dUTP nick end labeling (TUNEL) assay showed serious cell apoptosis in the tumor after PDT for 2 weeks, leading to an effective tumor inhibition rate of 67%. Benefit from the PDT, the tumor growth-induced liver and spleen burdens were largely attenuated, and the liver injury was also alleviated. More importantly, pulmonary and hepatic tumor metastases were significantly reduced after PDT. The Nd(3+)-sensitized LNPs provide a multifunctional nanoplatform for NIR light-assisted PDT with minimized heating effect and an effective inhibition of tumor growth and metastasis.


Assuntos
Elementos da Série dos Lantanídeos/química , Luminescência , Nanopartículas Metálicas/química , Neoplasias Experimentais/diagnóstico por imagem , Fotoquimioterapia/métodos , Animais , Apoptose , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/química , Rosa Bengala/química
8.
Nat Commun ; 5: 5669, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430519

RESUMO

The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices.

9.
Nanoscale ; 6(8): 4345-51, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24622916

RESUMO

Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 10(7) M(-1) cm(-1)), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm(-2), 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm(-2). These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.


Assuntos
Temperatura Alta , Nanopartículas Metálicas/química , Neoplasias/terapia , Paládio , Fototerapia/métodos , Morte Celular/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Paládio/química , Paládio/farmacologia
10.
Nanoscale ; 4(15): 4611-23, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22706800

RESUMO

Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF(4):Yb,Er@CaF(2)@SiO(2)-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF(4):Yb,Er@CaF(2) nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd(3+) ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r(1)) and similar imaging effect.


Assuntos
Corantes Fluorescentes/química , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Apoptose/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/toxicidade , Gadolínio DTPA/química , Gadolínio DTPA/toxicidade , Células HeLa , Humanos , Indóis/química , Imageamento por Ressonância Magnética , Compostos de Organossilício/química , Oxirredução , Fotoquimioterapia , Fármacos Fotossensibilizantes/toxicidade , Oxigênio Singlete/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho
11.
Langmuir ; 26(11): 8797-803, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20085339

RESUMO

An ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate)-based route was introduced into the synthesis of novel spherical NaYF(4) nanoclusters with the assistance of a microwave-accelerated reaction system. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and upconversion (UC) luminescence spectroscopy were used to characterize the obtained products. Interestingly, these spherical NaYF(4) nanoclusters with diameters ranging from 200 to 430 nm are formed by the self-assembly of small nanoparticles. The diameters of the nanoclusters could be easily tuned just by changing the amounts of the precursors. By conducting the control experiments with different ILs or precursors, it is proven that the ILs have played key roles, such as the solvents for the reaction, the absorbents of microwave irradiation, and the major fluorine sources for the formation of the NaYF(4) nanocrystals. The UC luminescence properties of the Ln(3+) codoped NaYF(4) were measured, and the results indicate that the nanoclusters obtained in BmimBF(4) exhibit excellent UC properties. Since this IL-based and microwave-accelerated procedure is efficient and environmentally benign, we believe that this method may have some potential applications in the synthesis of other nanomaterials.

12.
Chem Commun (Camb) ; (18): 2547-9, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19532885

RESUMO

Upon the tunable surface plasmon band of the pH-induced reversible assembly of gold nanoparticles mediated by cysteine, the manipulation of green and red upconversion emission, and the switching of the red emission of the NaYF(4):Yb,Er nanoparticles have been achieved in a facile and reproducible way.

13.
J Am Chem Soc ; 130(50): 16968-77, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19053430

RESUMO

We present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can be divided into two stages: (1) formation of capsule-shaped alpha-Fe2O3 nanoparticles and (2) preferential dissolution along the long dimension of the elongated nanoparticles (the c axis of alpha-Fe2O3) to form nanorings. The shape of the nanorings is mainly regulated by the adsorption of phosphate ions on faces parallel to c axis of alpha-Fe2O3 during the nanocrystal growth, and the hollow structure is given by the preferential dissolution of the alpha-Fe2O3 along the c axis due to the strong coordination of the sulfate ions. By varying the ratios of phosphate and sulfate ions to ferric ions, we were able to control the size, morphology, and surface architecture to produce a variety of three-dimensional hollow nanostructures. These can then be converted to magnetite (Fe3O4) and maghemite (gamma-Fe2O3) by a reduction or reduction-oxidation process while preserving the same morphology. The structures and magnetic properties of these single-crystal alpha-Fe2O3, Fe3O4, and gamma-Fe2O3 nanorings were characterized by various analytical techniques. Employing off-axis electron holography, we observed the classical single-vortex magnetic state in the thin magnetite nanorings, while the thicker rings displayed an intriguing three-dimensional magnetic configuration. This work provides an easily scaled-up method for preparing tailor-made iron oxide nanorings that could meet the demands of a variety of applications ranging from medicine to magnetoelectronics.

14.
Phys Chem Chem Phys ; 8(42): 4874-80, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17066177

RESUMO

Single crystalline one-dimensional (1-D) SnO(2) nanocrystals with controllable sizes, including the diameter and the aspect ratio, were synthesized by modulating the precursor concentration, reaction time and temperature via a solution method. By regulating the growth in a kinetic regime, a higher temperature range (220-240 degrees C) was beneficial to the growth of SnO(2) nanowires, while reactions below 220 degrees C only resulted in nanorods or even nanoparticles. The aggregates of SnO(2) nanocrystals in the forms of hollow spheres and dendrites were observed as the intermediates for the nanowires. Based on the TEM and SEM observations, the growth mechanism is discussed from the viewpoints of the nature of the reverse micelles and the crystal habit of rutile SnO(2). CO gas sensing measurements were also carried out for SnO(2) nanocrystals with different assembly styles. The results indicate that the sensitivity had close correlation to the specific surface area of the nanocrystals.


Assuntos
Gases/química , Nanopartículas/química , Tamanho da Partícula , Compostos de Estanho/química , Monóxido de Carbono/química , Microscopia Eletrônica de Transmissão e Varredura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA