Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 10(24): 10993-11012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042266

RESUMO

CRISPR/Cas-based mRNA imaging has been developed to labeling of high-abundance mRNAs. A lack of non-genetically encoded mRNA-tagged imaging tools has limited our ability to explore the functional distributions of endogenous low-abundance mRNAs in cells. Here, we developed a CRISPR-Sunspot method based on the SunTag signal amplification system that allows efficient imaging of low-abundance mRNAs with CRISPR/Cas9. Methods: We created a stable TRE3G-dCas9-EGFP cell line and generated an Inducible dCas9-EGFP imaging system for assessment of two factors, sgRNA and dCas9, which influence imaging quality. Based on SunTag system, we established a CRISPR-Sunspot imaging system for amplifying signals from single-molecule mRNA in live cells. CRISPR-Sunspot was used to track co-localization of Camk2a mRNA with regulatory protein Xlr3b in neurons. CRISPR-Sunspot combined with CRISPRa was used to determine elevated mRNA molecules. Results: Our results showed that manipulating the expression of fluorescent proteins and sgRNA increased the efficiency of RNA imaging in cells. CRISPR-Sunspot could target endogenous mRNAs in the cytoplasm and amplified signals from single-molecule mRNA. Furthermore, CRISPR-Sunspot was also applied to visualize mRNA distributions with its regulating proteins in neurons. CRISPR-Sunspot detected the co-localization of Camk2a mRNA with overexpressed Xlr3b proteins in the neuronal dendrites. Moreover, we also manipulated CRISPR-Sunspot to detect transcriptional activation of target gene such as HBG1 in live cells. Conclusion: Our findings suggest that CRISPR-Sunspot is a novel applicable imaging tool for visualizing the distributions of low-abundance mRNAs in cells. This study provides a novel strategy to unravel the molecular mechanisms of diseases caused by aberrant mRNA molecules.


Assuntos
Sistemas CRISPR-Cas/genética , Microscopia Intravital/métodos , Imagem Molecular/métodos , RNA Mensageiro/metabolismo , Imagem Individual de Molécula/métodos , Animais , Linhagem Celular Tumoral , Embrião de Mamíferos , Feminino , Hemoglobina Fetal/genética , Células HEK293 , Humanos , Microscopia Confocal/métodos , Neurônios , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , Ratos , Ativação Transcricional , Transfecção
2.
J Exp Med ; 217(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31699822

RESUMO

Blood-brain barrier (BBB) dysfunction has been suggested to play an important role in epilepsy. However, the mechanism mediating the transition from cerebrovascular damage to epilepsy remains unknown. Here, we report that endothelial cyclin-dependent kinase 5 (CDK5) is a central regulator of neuronal excitability. Endothelial-specific Cdk5 knockout led to spontaneous seizures in mice. Knockout mice showed increased endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1) expression, decreased astrocytic glutamate reuptake through the glutamate transporter 1 (GLT1), and increased glutamate synaptic function. Ceftriaxone restored astrocytic GLT1 function and inhibited seizures in endothelial Cdk5-deficient mice, and these effects were also reversed after silencing Cxcl1 in endothelial cells and its receptor chemokine (C-X-C motif) receptor 2 (Cxcr2) in astrocytes, respectively, in the CA1 by AAV transfection. These results reveal a previously unknown link between cerebrovascular factors and epileptogenesis and provide a rationale for targeting endothelial signaling as a potential treatment for epilepsy.


Assuntos
Quimiocina CXCL1/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Epilepsia/metabolismo , Gliose/metabolismo , Receptores de Interleucina-8B/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Células Endoteliais/patologia , Epilepsia/patologia , Gliose/patologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Convulsões/metabolismo , Convulsões/patologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA