Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Comput Biol Med ; 155: 106665, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791552

RESUMO

Thymic epithelial tumors (TETs) are rare malignant tumors, and the molecular mechanisms of both primary and recurrent TETs are poorly understood. Here we established comprehensive proteomic signatures of 15 tumors (5 recurrent and 10 non-recurrent) and 15 pair wised tumor adjacent normal tissues. We then proposed an integrative network approach for studying the proteomics data by constructing protein-protein interaction networks based on differentially expressed proteins and a machine learning-based score, followed by network modular analysis, functional enrichment annotation and shortest path inference analysis. Network modular analysis revealed that primary and recurrent TETs shared certain common molecular mechanisms, including a spliceosome module consisting of RNA splicing and RNA processing, but the recurrent TET was specifically related to the ribosome pathway. Applying the shortest path inference to the collected seed gene module identified that the ribonucleoprotein hnRNPA2B1 probably serves as a potential target for recurrent TET therapy. The drug repositioning combined molecular dynamics simulations suggested that the compound ergotamine could potentially act as a repurposing drug to treat recurrent TETs by targeting hnRNPA2B1. Our study demonstrates the value of integrative network analysis to understand proteotype robustness and its relationships with genotype, and provides hits for further research on cancer therapeutics.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias do Timo , Humanos , Proteômica , Neoplasias do Timo/genética , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia , Redes Reguladoras de Genes
3.
Int J Biol Sci ; 18(10): 4187-4202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844793

RESUMO

Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Encéfalo/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
J Cancer ; 13(7): 2352-2361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517408

RESUMO

Lung cancer is acknowledged as a common cancer with high morbidity and mortality. MicroRNAs (miRNAs), kind of non-coding single-stranded RNA molecules, can be used in cancer clinical treatments. In this research, miR-199a-5p was seen lowly expressed in NSCLC sera samples. miR-199a-5p suppressed the cell proliferation, migration and arrested cell cycle in NSCLC cell lines. The results showed that SLC2A1 (glucose transporter 1, GLUT1) was a direct target of miR-199a-5p. Downregulation of SLC2A1 could not only inhibit cell proliferation, migration and cell cycle, but also promote cell apoptosis. The data suggests that miR-199a-5p can inhibit glucose metabolism in NSCLC by targeting SLC2A1.This study proves that miR-199a-5p / SLC2A1 can play an essential role in the development of NSCLC by targeting SLC2A1. It puts forward a new approach for clinical treatments of NSCLC.

5.
Front Immunol ; 12: 748820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867976

RESUMO

Thymic carcinoma (TC) is the most aggressive thymic epithelial neoplasm. TC patients with microsatellite instability, whole-genome doubling, or alternative tumor-specific antigens from gene fusion are most likely to benefit from immunotherapies. However, due to the rarity of this disease, how to prioritize the putative biomarkers and what constitutes an optimal treatment regimen remains largely unknown. Therefore, we integrated genomic and transcriptomic analyses from TC patients and revealed that frameshift indels in KMT2C and CYLD frequently produce neoantigens. Moreover, a median of 3 fusion-derived neoantigens was predicted across affected patients, especially the CATSPERB-TC2N neoantigens that were recurrently predicted in TC patients. Lastly, potentially actionable alterations with early levels of evidence were uncovered and could be used for designing clinical trials. In summary, this study shed light on our understanding of tumorigenesis and presented new avenues for molecular characterization and immunotherapy in TC.


Assuntos
Antígenos de Neoplasias/imunologia , Timoma/genética , Timoma/imunologia , Neoplasias do Timo/genética , Neoplasias do Timo/imunologia , Adulto , Idoso , Carcinogênese , Feminino , Genômica , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Transcriptoma
6.
Acta Biochim Biophys Sin (Shanghai) ; 53(12): 1681-1690, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34695177

RESUMO

The 5-year survival rate of lung cancer is one of the lowest among various malignant tumors. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can function either as tumor suppressors or as oncogenes. The aim of this study is to investigate the function of lncRNA LINC01296 and its molecular mechanism in non-small-cell lung cancer (NSCLC). According to the Gene Expression Omnibus database, 10 differentially expressed lncRNAs in NSCLC cells and patient tissues are upregulated. LINC01296 is the one with the most significant overexpression. Knockdown of LINC01296 inhibits the growth and migration, arrests the cell cycle, and promotes the apoptosis of NSCLC cells. Knocking down LINC01296 in vivo suppresses tumor growth and metastasis. LINC01296 also acts as the sponge of miR-143-3p. Lowering the expression of LINC01296 leads to decreased expression of autophagy-related 2B (ATG2B), a target gene of miR-143-3p. Moreover, downregulation of LINC01296 promotes paclitaxel sensitivity in NSCLC. These results demonstrated that the LINC01296/miR-143-3p/ATG2B axis is crucial in promoting the development of NSCLC and paclitaxel resistance. Our study may provide new ideas for the further research of clinical chemotherapy of NSCLC in the near future.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Apoptose/genética , Proteínas Relacionadas à Autofagia/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citoplasma/genética , Citoplasma/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Metástase Neoplásica/genética , Paclitaxel/farmacologia , Proteínas de Transporte Vesicular/genética
7.
Mol Ther Nucleic Acids ; 23: 1217-1228, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664999

RESUMO

Non-small cell lung cancer (NSCLC) is the most common form of cancer, resulting in cancer-related deaths worldwide. Exosomes, a subclass of extracellular vesicles, are produced and secreted from various types of cells, including cancer cells. Cancer-derived exosomes can deliver nucleic acids, proteins, and lipids to provide a favorable microenvironment that supports tumor growth through enhancing cell proliferation and metastasis. Our results showed that miR-224-5p was upregulated in NSCLC patient tissues and cell lines, with a tumor-promoting phenotype. Meanwhile, exosome-derived miR-224-5p induced cell proliferation and metastasis in NSCLC and human lung cells. Moreover, we characterized the androgen receptor (AR) as a direct target of miR-224-5p. Tumor xenograft assay experiments revealed that overexpression of miR-224-5p drove NSCLC tumor growth via the suppression of AR and the mediation of epithelial-mesenchymal transition (EMT). Collectively, our results suggest that miR-224-5p-enriched exosomes promote tumorigenesis by directly targeting AR in NSCLC, which may provide novel potential therapeutic and preventive targets for NSCLC.

8.
Pathol Res Pract ; 216(11): 153145, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32827803

RESUMO

Lung cancer is one of the most malignant tumors that can form in the human. MicroRNAs (MiRNAs) play significant role in tumor progression. Human lung cancer tissues and cell lines were used to determine miR-150-5p respectively, and Liver Kinase B1 (LKB1) expression using quantitative real-time PCR (qRT-PCR). The data analysis website Kaplan-Meier Plotter (database obtained from The Cancer Genome Atlas) was used to perform a survival analysis with LKB1 levels. Using the appropriate assays, the function of miR-150-5p was also detected in cellular proliferation, migration and cell apoptosis as well as cell cycle. Results revealed that miR-150-5p was upregulated in non-small cell lung cancer (NSCLC) tissue and cell lines. In NSCLC, miR-150-5p promoted cellular proliferation and migration, but decreased cellular apoptosis. Conversely, miR-150-5p inhibition suppressed cellular growth. These results further revealed a network of cellular signaling for miR-150-5p to target LKB1. Ectopic expression of LKB1 can mitigate the tumor-promoting function of miR-150-5p. Collectively, these results indicated that miR-150-5p may promote lung cancer by inhibiting the suppressor gene LKB1 in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética
9.
Am J Med Sci ; 360(3): 248-260, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32466856

RESUMO

BACKGROUND: Lung cancer is one of the most malignant cancers threatening human health. The miR-17-92 gene cluster is a highly conserved oncogene cluster encoding 6 miRNAs: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a and miR-92a. This study explored whether these miRNAs can be used as diagnostic markers for non-small-cell lung cancer (NSCLC). METHODS: Serum samples were collected from healthy subjects (n = 23) and NSCLC patients at various stages (n = 74). Serum RNA was extracted by the TRIzol-glycogen method, and cDNA libraries were constructed by reverse transcription. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of the 6 miRNAs. RESULTS: The expression levels of the 6 miRNAs varied in different stages of NSCLC. Thus, 2 receiver operating characteristic (ROC) curves, that is, normal subjects and stage I-III patients and normal subjects and stage IV patients, of each miRNA were established to determine the interval of normal ΔCt values. The 2 areas under the curve (AUCs) of each miRNA were investigated (miR-17: 0.8097 and 1.000; miR-18a: 0.7388 and 0.9907; miR-19a/19b: 0.8451 and 0.5104; miR-20a: 0.8975 and 1.000; miR-92a: 0.8097 and 0.8342). In addition, a high positive correlation was discovered between miR-17 and miR-20a expression. Combining these 2 miRNAs can improve the screening effect of NSCLC. CONCLUSION: The miR-17-92 gene cluster can likely serve as a diagnostic marker in NSCLC.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Família Multigênica/genética , Estadiamento de Neoplasias , RNA/sangue , RNA Longo não Codificante , Curva ROC , Sensibilidade e Especificidade
10.
Mol Oncol ; 14(4): 721-741, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31967407

RESUMO

Thymic epithelial tumors (TETs) belong to a group of tumors that rarely occur, but have unresolved mechanisms and heterogeneous clinical behaviors. Current care of TET patients demands biomarkers of high sensitivity and specificity for accurate histological classification and prognosis management. In this study, 134 fresh-frozen tissue samples (84 tumor, 40 tumor adjacent, and 10 normal thymus) were recruited to generate a quantitative and systematic view of proteomic landscape of TETs. Among them, 90 samples were analyzed by data-independent acquisition mass spectrometry (DIA-MS) leading to discovery of novel classifying molecules among different TET subtypes. The correlation between clinical outcome and the identified molecules was probed, and the prioritized proteins of interest were further validated on the remaining samples (n = 44) via parallel reaction monitoring (PRM) as well as immunohistochemical and confocal imaging analysis. In particular, two proteins, the cellular mRNA deadenylase CCR4 (carbon catabolite repressor 4)-NOT (negative on TATA) complex subunit 2/9 (CNOT2/9) and the serine hydroxymethyltransferase that catalyzes the reversible interconversions of serine and glycine (SHMT1), were found at dramatic low levels in the thymic epithelia of more malignant subtype, thymic squamous cell carcinoma (TSCC). Interestingly, the mRNA levels of these two genes were shown to be closely correlated with prognosis of the TET patients. These results extended the existing human tissue proteome atlas and allowed us to identify several new protein classifiers for TET subtyping. Newly identified subtyping and prognosis markers, CNOT2/9 and SHMT1, will expand current diagnostic arsenal in terms of higher specificity and prognostic insights for TET diagnosis and management.


Assuntos
Neoplasias Epiteliais e Glandulares/diagnóstico , Proteoma/análise , Neoplasias do Timo/diagnóstico , Adulto , Idoso , Biomarcadores Tumorais/análise , Feminino , Glicina Hidroximetiltransferase/análise , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/patologia , Prognóstico , Proteômica , Proteínas Repressoras/análise , Neoplasias do Timo/patologia , Fatores de Transcrição/análise
11.
BMC Cancer ; 19(1): 796, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409307

RESUMO

BACKGROUND: Histology is a traditional way to classify subtypes of thymoma, because of low cost and convenience. Yet, due to the diverse morphology of thymoma, this method increases the complexity of histopathologic classification, and requires experienced experts to perform correct diagnosis. Therefore, in this study, we developed an alternative method by identifying protein biomarkers in order to assist clinical practitioners to make right classification of thymoma subtypes. METHODS: In total, 204 differentially expressed proteins in three subtypes of thymoma, AB, B2, and B3, were identified using mass spectrometry. Pathway analysis showed that the differentially expressed proteins in the three subtypes were involved in activation-related, signaling transduction-related and complement system-related pathways. To predict the subtypes of thymoma using the identified protein signatures, a support vector machine algorithm was used. Leave-one-out cross validation methods and receiver operating characteristic analysis were used to evaluate the predictive performance. RESULTS: The mean accuracy rates were > 80% and areas under the curve were ≧0.93 across these three subtypes. Especially, subtype B3 had the highest accuracy rate (96%) and subtype AB had the greatest area under the curve (0.99). One of the differentially expressed proteins COL17A2 was further validated using immunohistochemistry. CONCLUSIONS: In summary, we identified specific protein signatures for accurately classifying subtypes of thymoma, which could facilitate accurate diagnosis of thymoma patients.


Assuntos
Proteoma , Proteômica , Timoma/diagnóstico , Timoma/metabolismo , Adulto , Idoso , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteômica/métodos , Curva ROC , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Timoma/genética , Transcriptoma
12.
Int J Biol Sci ; 15(5): 1072-1079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182926

RESUMO

Epidermal growth factor receptor (EGFR), a cancer-driven gene, plays an important role in tumorigenesis of lung cancer. Cryptotanshinone (CT) is the main constituent of salia miltiorrhiza and has been found to affect tumor progression. However, the mechanism of CT on lung cancer is still not clear. Here we found that CT could suppress the proliferation of non-small cell lung cancer (NSCLC) by inhibiting EGFR. We further confirmed that knockdown of EGFR also suppressed cell proliferation and arrested cell cycle progression. Furthermore, we evaluated EGFR was a direct target gene of miR-146a-5p which was upregulated by CT. In general, our results proved that CT could restrain NSCLC via miR-146a-5p/EGFR axis. CT and miR-146a-5p have the potential to be positive candidates in drug development of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/metabolismo , Fenantrenos/farmacologia , Células A549 , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Immunoblotting
13.
Oncogene ; 38(11): 1892-1904, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390072

RESUMO

Lung cancer is one of the most common malignant diseases globally, composed of non-small cell lung cancer (NSCLC, 85%) and small cell lung cancer (SCLC, 15%). MicroRNAs (miRNAs) are single-stranded noncoding RNAs having important roles in lung cancer development. miR-411-5p/3p were reported to be increased significantly in human NSCLC tissues and cell lines. Moreover, miR-411-5p/3p overexpression could accelerate cell proliferation and migration, and impede cell apoptosis in NSCLC cell lines. Mechanically, SPRY4 is confirmed a direct target of miR-411-5p/3p. Furthermore, our findings showed that miR-411-5p/3p promoted lung tumor growth in vivo, decreased SPRY4 expression dramatically, and induced EGFR, AKT signaling activation, as well as epithelial-mesenchymal transition (EMT) simultaneously in tumor tissues. In addition, we showed that miR-411-5p also targeted tumor suppressor TXNIP, involved in regulating positively cell cycle progress in SPC-A1 cells rather than in H1299. Whether cell specificity of low TXNIP mRNA level in H1299 is responsible for the different response to cell cycle between H1299 and SPC-A1 would need further explorations. Collectively, these results suggest that miR-411-5p/3p are required for NSCLC development by suppressing SPRY4 and TXNIP; thus, the miR-411-SPRY4-AKT axis might act as a promising target for lung cancer therapy clinically.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , MicroRNAs/fisiologia , Proteínas do Tecido Nervoso/genética , Células A549 , Animais , Apoptose/genética , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/genética , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Transdução de Sinais/genética
14.
Chem Biol Drug Des ; 90(5): 730-738, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28378898

RESUMO

tRNA-derived RNA fragments (tRFs), non-coding single-stranded RNAs with 14-35 nt in length, were found to play important roles in gene regulation, even in carcinogenesis. In this study, we investigated the expression of tRF-Leu-CAG in human non-small cell lung cancer (NSCLC) and its function in the cell proliferation and cell cycle of NSCLC. The expression level of tRF-Leu-CAG was detected in NSCLC tissues, cell lines, and sera. tRF-Leu-CAG RNA levels were higher in NSCLC tumor tissues than in normal tissues, and also upregulated in NSCLC cell lines. A significant relationship was observed between stage progression and tRF-Leu-CAG in NSCLC sera. We found that in H1299 cells, inhibition of tRF-Leu-CAG suppressed cell proliferation and impeded cell cycle. AURKA was also repressed with the knockdown of tRF-Leu-CAG. Thus, our study revealed that tRF-Leu-CAG may be involved in regulating AURKA and could be a new diagnostic marker and potential therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia
15.
Oncotarget ; 7(23): 34011-21, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27049724

RESUMO

MicroRNAs are a class of non-coding single-stranded RNA, 20-23 nucleotide in length, which can be involved in the regulation of gene expression. Through binding with 3'-untranslated regions (3'-UTR), microRNAs can cause degradation of target mRNAs or inhibition of translation, and thus regulating the expression of genes at the post-transcriptional level. In this study, we found that miR-486-5p was significantly downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines, suggesting that miR-486-5p might function as a tumor suppressor in lung cancer. Additionally, we showed that CDK4, an oncogene that plays an important role in cell cycle G1/S phase progression, was directly targeted by miR-486-5p. Furthermore, our data reveals that knockdown of CDK4 by siRNA can inhibit cell proliferation, promote apoptosis, and impede cell-cycle progression. In epigenetics, the upstream promoter of miR-486-5p was strongly regulated by methylation in NSCLC. Collectively, our results suggest that miR-486-5p could not only inhibit NSCLC by downregulating the expression of CDK4, but also be as a promising and potent therapy in the near future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Quinase 4 Dependente de Ciclina/metabolismo , Neoplasias Pulmonares/enzimologia , MicroRNAs/metabolismo , Células A549 , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Metilação de DNA , Regulação para Baixo , Epigênese Genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
16.
Chin Med J (Engl) ; 125(16): 2811-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22932072

RESUMO

BACKGROUND: The prognostic relevance of World Health Organization (WHO) subtypes within type B thymomas is still controversial. Understanding of the molecular characteristics of the different histologic types of thymomas will provide meaningful information for diagnosis and therapeutic management in type B thymoma. METHODS: Proteins extracted from twelve type B thymoma tissue specimens (six type B1 and six type B2) were analyzed by two-dimensional electrophoresis (2-DE) coupled with MALDI-TOF-MS. Differentially expressed proteins were then assayed in sixty-nine type B thymoma tissues (including B1, B2 and B3) by tissue array analysis with immunohistochemistry staining. The relationship of their expression with clinicopathological parameters, such as tumor stage or WHO classification, was estimated by Spearman's Rank Correlation Test. RESULTS: Sixteen differentially expressed proteins between type B1 and B2 thymoma tissues were identified. The differential levels of ezrin and glutathione S-transferase pi (GSTP1) were validated using immunohistochemistry staining. A statistically significant difference was observed in the positive rate of ezrin expression between type B1 thymoma and type B3 thymoma (Z = -2.963, P < 0.01). Ezrin showed a tendency to be expressed in higher classification tumors from type B1 to B3. A statistical analysis demonstrated that type B2 and B3 tumors had significantly higher positive expression of GSTP1 than the B1 group (type B2 vs. B1: Z = -2.582, P = 0.01; type B3 vs. B1: Z = -4.012, P ≤ 0.001). The results also showed a strong correlation between GSTP1 and WHO type staging of B1 to B3 tumors (Spearman's correlation coefficient: 0.633, P ≤ 0.001). Statistical analysis showed that there was close correlation between GSTP1 and ezrin expression with the clinical stage (Spearman's correlation coefficients, ezrin: 0.481, P < 0.05; GSTP1: 0.484, P < 0.01). CONCLUSIONS: Differentially expressed proteins between type B1 and B2 thymoma tissues were analyzed by comparative proteomic analysis. The techniques of proteomic analysis and tissue array provide a potential tool for screening of key molecules in type B thymoma histological sub-classifications. The statistical analysis of ezrin and GSTP1 expression by immunohistochemistry, especially GSTP1, may be a useful approach for type B thymoma classification.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Timoma/classificação , Timoma/metabolismo , Adolescente , Adulto , Idoso , Proteínas do Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Glutationa S-Transferase pi/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise Serial de Tecidos , Adulto Jovem
17.
J Cancer Res Clin Oncol ; 137(3): 521-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20499251

RESUMO

PURPOSE: Paclitaxel is used as the first-line chemotherapy for Non-Small Cell Lung Cancer (NSCLC), but acquired resistance becomes a critical problem. Several mechanisms have been proposed in paclitaxel resistance, but they are not sufficient to exhaustively explain this resistance emergence. To better investigate molecular resistance mechanisms, a comparative proteomic approach was carried out to identify differentially expressed proteins between human lung adenocarcinoma A549 cell line (paclitaxel sensitive) and A549-Taxol cell line (acquired resistant). METHODS: A paclitaxel-resistant subline (A549-Taxol) derived from the parental-sensitive cell line A549 was established by stepwise selection by paclitaxel. Total proteins in the two cell lines were separated by fluorescent differential gel electrophoresis (DIGE). Image analysis was carried out with the DeCyder 2D 6.5 software. Proteins associated with chemoresistance process were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Some key molecules were valuated by Western blot. RESULTS: Thirty proteins were identified and grouped into eight main functional classes according to the biological processes in which they are likely to participate, i.e. signal transduction, cytoskeleton, redox reaction, energy and metabolism, and so on. Alterations of these processes might be involved in paclitaxel resistance. Most of the proteins showed mitochondrial and cytoplasm location. The up-regulation of CK8, CK18, ALDH1, CAST and ANX I in A549-Taxol cell line was verified by Western blot, in coincidence with the data obtained from proteomic analysis. CONCLUSION: For the first time, differentially expressed proteins between paclitaxel-sensitive cell line and paclitaxel-resistant one were explored by comparative proteomic approach in human lung adenocarcinoma. It may be useful for further studying of resistance mechanisms and screening of resistance biomarkers, so as to develop tailored therapeutic strategies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Neoplasias/metabolismo , Paclitaxel/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mapeamento de Peptídeos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Zhongguo Fei Ai Za Zhi ; 12(7): 735-40, 2009 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-20719147

RESUMO

BACKGROUND: Paclitaxol (PTX) resistance is one of main factors which affect the outcome of chemotherapy of lung adenocarcinoma. The aim of this study is to compare the secreted protein expression profiles between Paclitaxol (PTX) resistant and sensitive lung adenocarcinoma cells by proteomic research method, so as to provide evidence of choosing individual chemotherapy drugs in clinical treatment. METHODS: Total secreted proteins extracted from a PTX sensitive cell line A549 and a PTX resistant cell line A549-Taxol were separated by fluorscent differential gel electrophoresis (DIGE). High quality 2-DE profiles were obtained and analyzed by Decyder 6.5 analysis software to screen differentially expressed protein spots. Those spots were identified by mass spectrometry. RESULTS: 2-DE patterns of lung adenocarcinoma cells with high-resolution and reproducibility were obtained. 76 significantly differentially expressed protein spots were screened, 19 proteins were identified by mass spectrometry. The identified proteins could be classified into different catogories: metabolic enzyme, extracellular matrix (ECM) degradation enzyme, cytokine, signal transducer, cell adhesion, and so on. CONCLUSIONS: Multiple secreted proteins related to chemoresistance of A549-Taxol cells were identified in this study for the first time. The results presented here would provide clues to identify new serologic chemoresistant biomarkers of NSCLC.

19.
J Cancer Res Clin Oncol ; 133(6): 379-87, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17219199

RESUMO

PURPOSE: To extensively investigate the glycoproteins of normal human liver tissue, constructing the glycoprotein profile and database of the normal human liver tissue. METHODS: The total proteins were extracted from the normal human liver tissue and then subjected to two-dimensional electrophoresis (2-DE). Finally, 2-DE gels were stained according to the methods of multiplexed proteomics (MP) technology. Glycoprotein spots were excised from 2-DE gel and then characterized by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). RESULTS: The PDQuest software detected 1,011 glycoprotein spots and 1,923 total protein spots in the 2-DE gels of sample from the normal human liver tissue. Furthermore, 116 species of glycoproteins were successfully identified via peptide mass profiling using MALDI-TOF-MS/MS and annotated to our databases. In addition, we also applied bioinformatics softwares to predict N- or O-glycosylation sites of identified glycoproteins. CONCLUSION: This study demonstrates the feasibility of a novel technological platform to contruct glycoprotein databases. These results lay the foundation for future physiological and pathological studies of the human liver.


Assuntos
Bases de Dados de Proteínas , Glicoproteínas/análise , Fígado/química , Eletroforese em Gel Bidimensional , Estudos de Viabilidade , Glicosilação , Humanos , Processamento de Imagem Assistida por Computador , Proteômica , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA