Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 235: 123868, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870639

RESUMO

Metal-organic frameworks (MOFs) have a potential application in blood purification, but their microcrystalline nature has hampered their industrial application. Here, novel MOFs-polymer beads based on UiO, sodium alginate, polyacrylic acid, and poly (ethylene imine) were prepared and applied as a whole blood hemoadsorbent for the first time. The amidation among polymers immobilized UiO66-NH2 into the network of the optimal product (SAP-3), and the NH2 of UiO66-NH2 significantly increased the removal rate (70 % within 5 min) of SAP-3 on bilirubin. The adsorption of SAP-3 on bilirubin mainly obeyed the pseudo-second-order kinetic, Langmuir isotherm and Thomas models with a maximum adsorption capacity (qm) of 63.97 mg·g-1. Experimental and density functional theory simulation results show that bilirubin was mainly adsorbed by UiO66-NH2via electrostatic force, hydrogen bonding, and π-π interactions. Notably, the adsorption in vivo show that the total bilirubin removal rate in the whole blood of the rabbit model was up to 42 % after 1 h of adsorption. Given its excellent stability, cytotoxicity, and hemocompatibility, SAP-3 has a great potential in hemoperfusion therapy. This study proposes an effective strategy for settling the powder property of MOFs and could provide experimental and theoretical references for application of MOFs in blood purification.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Animais , Coelhos , Bilirrubina/química , Heparina , Polímeros/química , Adsorção , Etilenos , Poluentes Químicos da Água/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120868, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032760

RESUMO

As a new form of nicotine introduction for novel tobacco products, the interaction of nicotine salt with biological macromolecules may differ from that of free nicotine and thus affect its transport and distribution in vivo. Hence, the mechanism underlying the interaction between 2,6-dihydroxybenzoic acid nicotine salt (DBN) and human serum albumin (HSA) was investigated by multi-spectroscopy, molecular docking, and dynamic simulation. Experiments on steady-state fluorescence and fluorescence lifetime revealed that the quenching mechanism of DBN and HSA was dynamic quenching, and binding constant was in the order of 10^4 L mol-1. Thermodynamic parameters exhibited that the binding was a spontaneous process with hydrophobic forces as the main driving force. Fluorescence competition experiments revealed that DBN bound to site I of HSA IIA subdomain. According to the results of synchronous fluorescence, 3D fluorescence, FT-IR spectroscopy, circular dichroism (CD) spectroscopy, and molecular dynamics (MD) simulation, DBN did not affect the basic skeleton structure of HSA but changed the microenvironment around the amino acid residues. Computer simulations positively corroborated the experimental results. Moreover, DBN decreased the surface hydrophobicity and weakened the esterase-like activity of HSA, leading to the impaired function of the latter. This work provides important information for studying the interaction between DBN as a nicotine substitute and biological macromolecules and contributes to the further development and application of DBN.


Assuntos
Simulação de Dinâmica Molecular , Albumina Sérica Humana , Sítios de Ligação , Dicroísmo Circular , Humanos , Hidroxibenzoatos , Simulação de Acoplamento Molecular , Nicotina , Ligação Proteica , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
3.
J Mater Chem B ; 9(42): 8768-8778, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34585713

RESUMO

HER2+ breast cancer is highly aggressive and proliferative even after multiple chemotherapy regimens. At present, the available clinical treatment duration of chemotherapeutic agents is limited by severe toxicity to noncancerous tissues, which are attributed to insufficient targeting. Here, we designed an active-targeted and pH-responsive liposome to improve the treatment. The ideas were as follows: (1) using liposome as a nano-delivery system for HER2 inhibitor (lapatinib; LAP) to reduce the toxicity; (2) modifying the capsule with T7 peptide for specific targeted delivery to the tumor cells, and (3) enabling the capsule with the pH-sensitive ability and triggering sustained drug release at extracellular weakly acidic microenvironment to emerge toxicity in tumors and to improve curative effects. It was found that T7 peptide-modified pH-sensitive liposome (T7-LP) was more effective and safer than free drug and unmodified liposome, and reduced drug-induced side effects and noncancerous toxicity. These results support the application potential of T7-LP in improving the efficacy of LAP in HER2+ breast cancer treatment. It might be a novel LAP formulation as a clinical agent.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Colágeno Tipo IV/química , Lapatinib/farmacologia , Fragmentos de Peptídeos/química , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Animais , Antineoplásicos/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Lapatinib/química , Lipossomos/química , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Imagem Óptica , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/metabolismo
4.
Int J Biol Macromol ; 184: 101-108, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119545

RESUMO

Lentinan is a natural ß-glucan with various bioactivities and is combined with chemotherapy drugs for cancer treatment. Regorafenib is an oral multi-kinase inhibitor approved by FDA for treatment of metastatic colorectal cancer, advanced hepatocellular carcinoma, and metastatic gastrointestinal stromal tumors. Regorafenib has poor water solubility and multiple toxicities. We report drug-drug nanosuspensions of regorafenib and lentinan. Results of dynamic light scattering and scanning electron microscopy showed that the mean particle size of the regorafenib-lentinan nanosuspensions was approximately 200 nm and was uniformly distributed. Transmission electron microscopy findings indicated that lentinan stabilized the nanosuspensions by steric manner. Hydrogen bonds and hydrophobic interactions were found between regorafenib and lentinan by molecular dynamics simulation. The results of cytotoxicity assay and pharmacokinetics study in rats showed that the regorafenib-lentinan nanosuspensions reduced the toxicity and enhanced the in vitro anticancer activity and oral bioavailability of regorafenib. Lentinan as a natural stabilizer has the potential using for drug nanosuspensions. Drug-drug nanosuspensions are a new form of combination therapies that can reduce the number of drugs taken by patients and improve their compliance.


Assuntos
Antineoplásicos/administração & dosagem , Lentinano/administração & dosagem , Compostos de Fenilureia/administração & dosagem , Piridinas/administração & dosagem , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Composição de Medicamentos , Células HCT116 , Células HEK293 , Humanos , Lentinano/química , Lentinano/farmacocinética , Simulação de Dinâmica Molecular , Nanopartículas , Tamanho da Partícula , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Solubilidade , Suspensões
5.
Colloids Surf B Biointerfaces ; 201: 111644, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33639512

RESUMO

The clinical efficacy of lenvatinib (LFT) is limited by its poor aqueous solubility and low bioavailability. In this work, LFT-loaded soy phospholipid and sodium glycocholate mixed micelles (LFT-MMs) were prepared through classical co-precipitation. And it was served as an oral administration to address these shortcomings. The preparation conditions were optimized by single-factor experiments. The mass ratio of PC, SGC and LFT, and the species of dispersing media were proved to be decisive factors in controlling the properties of LFT-MMs. The optimal LFT-MMs presented prominent enhancement (500-fold) in LFT solubility, high encapsulation efficiency (87.6 %) as well as suitable stability (>1 month at 4 °C). The biocompatibility of LFT-MMs was estimated by in vitro serum stability measurement and hemolysis test. It showed that serum proteins hardly adhered to the surface of LFT-MMs, and insignificant hemolytic rate (<0.5 %) was observed at the micelles concentration below 1 mg/mL. Cytotoxicity test (MTT assay) was carried out to judge the in vitro antitumor activity. LFT-MMs showed an enhanced inhibitory activity against two main kinds of differentiated thyroid cancer cells over LFT and LFT Mesylate. To estimate the in vivo oral bioavailability of LFT-MMs, SD rats were used as animal model. Notably, the relative bioavailability of LFT-MMs compared with the original form of LFT was 176.7 %. These superior characteristics indicated that the mixed micelles are promising water-soluble formulations suitable for LFT oral delivery.


Assuntos
Micelas , Fosfolipídeos , Administração Oral , Animais , Disponibilidade Biológica , Portadores de Fármacos , Tamanho da Partícula , Compostos de Fenilureia , Quinolinas , Ratos , Ratos Sprague-Dawley , Solubilidade
6.
Front Immunol ; 11: 2032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133061

RESUMO

In our previous study, we have found increased serum levels of HMGB1 in patients with Henoch- Schonlein purpura (HSP), allergic vasculitis (AV), and urticarial vasculitis (UV) and altered HMGB1 distribution in lesional skin in patients with HSP. HMGB1 plays a pro-inflammatory role in the pathogenesis of HSP. To further investigate the role of HMGB1 in the pathogenic mechanism of vasculitis, we investigated the anti-inflammatory effects of HMGB1 blockades (including anti-HMGB1 mAb and glycyrrhizin) in a mouse model of a cutaneous reverse passive Arthus (RPA) reaction. A total of 36 balb/c mice were randomly divided into four groups: the control group, IC model group, HMGB1 monoclonal antibody (anti-HMGB1-mAb) group and the glycyrrhizin group, with nine mice in each group. A cutaneous RPA reaction mouse model was established by injections of the OVA antibody and the OVA antigen. Mice of the anti-HMGB1-mAb group and glycyrrhizin group were pre-treated with anti-HMGB1 mAb or glycyrrhizin, respectively, before the RPA reaction. Our results indicated that HMGB1 blockades (anti-HMGB1 mAb and glycyrrhizin) obviously extenuated the severity of vasculitis skin damage and improved the histological evolvement of inflammatory cells infiltration, vascular fibroid necrosis, and vasodilation in a cutaneous RPA reaction mouse model. In addition, HMGB1 blockades reduced the infiltration of neutrophils, DCs, and T cells and decreased the mRNA expression of IL-6 and CCL5 in skin lesions in the cutaneous RPA reaction mouse model. We suggest that HMGB1 blockades may represent a new direction for the treatment of cutaneous vasculitis.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína HMGB1/antagonistas & inibidores , Vasculite Leucocitoclástica Cutânea/etiologia , Vasculite Leucocitoclástica Cutânea/metabolismo , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Ácido Glicirrízico/farmacologia , Imuno-Histoquímica , Camundongos , Vasculite Leucocitoclástica Cutânea/tratamento farmacológico , Vasculite Leucocitoclástica Cutânea/patologia
7.
Int J Biol Macromol ; 140: 709-718, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445155

RESUMO

Nanoscale metal-organic frameworks (NMOFs) have attracted considerable attention for controlled drug delivery. However, the interaction between nanoparticles and the biological macromolecules of physiological system must be valued because the formed protein corona will endow NMOFs with new biorecognition properties. In this study, we carried out detailed protein adsorption studies in vitro and cell uptake tests of HeLa cells for nanospherical Uio66 and nanooctahedral Uio67. Uio67 with higher binding constants to human serum albumin needed to combine more protein molecules to achieve colloidal stability state than that needed by Uio66, and this phenomenon led Uio67 to aggregate under the same incubation condition due to the formation of a single-layer protein. Uio67 also induced an evident conformation change in protein to stabilize the combination. In particular, the cell uptake efficiencies of the two systems showed a significant thickness dependence on the protein corona. When samples incubated in 10% fetal bovine serum (FBS), the intracellular rate was the highest for both systems, but the rate was not proportional to the FBS concentration. Results of this work are important to the development of the considerable potential NMOFs-based medicals and also provide additional insight into protein corona.


Assuntos
Comunicação Celular/fisiologia , Estruturas Metalorgânicas/química , Nanopartículas/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Adsorção , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células HeLa , Humanos , Tamanho da Partícula , Ligação Proteica , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo
8.
J Biomol Struct Dyn ; 37(6): 1451-1463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29620482

RESUMO

The interaction mechanism and binding mode of capecitabine with ctDNA was extensively investigated using docking and molecular dynamics simulations, fluorescence and circular dichroism (CD) spectroscopy, DNA thermal denaturation studies, and viscosity measurements. The possible binding mode and acting forces on the combination between capecitabine and DNA had been predicted through molecular simulation. Results indicated that capecitabine could relatively locate stably in the G-C base-pairs-rich DNA minor groove by hydrogen bond and several weaker nonbonding forces. Fluorescence spectroscopy and fluorescence lifetime measurements confirmed that the quenching was static caused by ground state complex formation. This phenomenon indicated the formation of a complex between capecitabine and ctDNA. Fluorescence data showed that the binding constants of the complex were approximately 2 × 104 M-1. Calculated thermodynamic parameters suggested that hydrogen bond was the main force during binding, which were consistent with theoretical results. Moreover, CD spectroscopy, DNA melting studies, and viscosity measurements corroborated a groove binding mode of capecitabine with ctDNA. This binding had no effect on B-DNA conformation.


Assuntos
Antimetabólitos Antineoplásicos/química , Capecitabina/química , DNA/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Algoritmos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Sítios de Ligação , Capecitabina/farmacologia , Bovinos , Modelos Teóricos , Estrutura Molecular , Conformação de Ácido Nucleico , Reprodutibilidade dos Testes , Reologia , Análise Espectral
9.
Mol Pharm ; 15(12): 5637-5645, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30422663

RESUMO

Dabrafenib is a novel targeted antimelanoma drug. The present work explored the binding mechanism of dabrafenib-human serum albumin (HSA) and the effect on the esterase-like activity and antioxidant activity of HSA by using 19F NMR, spectroscopy methods, and molecular dynamics simulation. The results of 19F NMR, fluorescence, and time-resolved fluorescence spectroscopy revealed that dabrafenib spontaneously binds to the subdomain IIIA of the HSA by hydrophobic action and forms a static complex. The binding affects the esterase-like activity of HSA but not its antioxidant activity. According to the results of molecular dynamics simulation, dabrafenib interacts with Arg410 and Tyr411, which are the key residue associated with the esterase-like activity of HSA. Meanwhile, dabrafenib does not interact with Cys34, the key residue associated with the antioxidant activity of HSA. The results of circular dichroism spectroscopy and molecular dynamics simulation show that the conformation of HSA is not affected by the binding of dabrafenib. This study can provide useful information for understanding the pharmacokinetic properties of dabrafenib.


Assuntos
Antineoplásicos/farmacocinética , Esterases/metabolismo , Imidazóis/farmacocinética , Oximas/farmacocinética , Albumina Sérica Humana/metabolismo , Antineoplásicos/química , Sítios de Ligação , Dicroísmo Circular , Cisteína/metabolismo , Esterases/química , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Simulação de Dinâmica Molecular , Oximas/química , Ligação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência
10.
Int J Pharm ; 545(1-2): 74-83, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29715531

RESUMO

This study aims to design a novel nano-sized anticancer drug delivery system that can enhance the therapeutic effects of the loaded drug. With this idea in mind, this work reported the design and characterization of epigallocatechin-3-gallate (EGCG) functionalized chitin (CH) derivative, and its application in nano-drug delivery system. The EGCG-functionalized CH (CE) polymer was firstly prepared and characterized. The nanoparticles (NPs) of CE-loaded honokiol (HK), which was prepared by ionic crosslinking, exhibited a size of 80 nm, zeta potential of +33.8 mV, and spherical morphology. The antitumor activity of the CE-HK NPs in vitro and in vivo was investigated and compared to free HK. As a result, the CE-HK NPs can effectively inhibited cell proliferation of HepG2 cell by inhibiting more cells in the G2/M phase and decreasing mitochondrial membrane potential. The CE-HK NPs (40 mg/kg) inhibited tumor growth by 83.55% (p < 0.05), which was far higher than the 30.15% inhibition of free HK (40 mg/kg). The proposed delivery system exhibits better tumor selectivity and growth reduction both in vitro and in vivo, and does not induce any side effects. Therefore, the CE-HK NPs may act as an effective delivery system of liver cancer agent HK.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Catequina/análogos & derivados , Quitina/química , Portadores de Fármacos , Lignanas/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/química , Carcinoma Hepatocelular/patologia , Catequina/administração & dosagem , Catequina/química , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Relação Dose-Resposta a Droga , Composição de Medicamentos , Liberação Controlada de Fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Cinética , Lignanas/química , Neoplasias Hepáticas/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Nanotecnologia , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Tecnologia Farmacêutica/métodos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Food Chem ; 260: 183-192, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29699660

RESUMO

Tertiary butylhydroquinone (TBHQ) is a water-insoluble antioxidant. In this study, three cyclodextrin inclusion complexes were prepared to improve the water solubility of TBHQ and expand its range of application. Analysis of phase solubility indicated that TBHQ can form 1:1 inclusion complex with hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and dimethyl-beta-cyclodextrin (DM-ß-CD) and 1:2 inclusion complex with beta-cyclodextrin (ß-CD). The possible inclusion configuration between TBHQ and CDs was determined through FT-IR, PXRD, DSC, NMR, and SEM analyses. Results were validated by theoretical study of AutoDock molecular docking. The scavenging effects of the inclusion complexes were not effective on DPPH radical but higher on hydroxyl, superoxide and ABTS+ radicals than that of TBHQ monomer. Moreover, the water solubility of TBHQ increased after complexation with HP-ß-CD and DM-ß-CD. The stability of TBHQ is related to the type of storage materials used, and the stability can be improved by complexation with CDs.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Hidroquinonas/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Compostos de Bifenilo/química , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Picratos/química , Solubilidade , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
12.
RSC Adv ; 8(9): 4742-4749, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35539509

RESUMO

Trametinib is a novel anticancer drug for treating metastatic cutaneous melanoma. The present study probed into the binding of trametinib to human serum albumin (HSA) through spectroscopy methods and molecular simulations. Trametinib could quench the fluorescence of HSA through static quenching which could be probed via fluorescence spectroscopy and time-resolved fluorescence. Thermodynamic parameters and docking results indicated that hydrogen bonds and van der Waals forces play crucial roles in this binding process, which exerts almost no effect on the HSA conformation under synchronous fluorescence, three-dimensional fluorescence, circular dichroism spectra, and molecular dynamics simulations. Site marker displacement experiments and molecular docking reveal that trametinib primarily binds to Sudlow site I of HSA. In addition, the trametinib-HSA interaction was hardly influenced by varying amino acid (glutamine, alanine, glycine, and valine) concentrations. This study can provide useful information for the pharmacokinetic properties of trametinib.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA