Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2316553121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437553

RESUMO

Developing cost-effective and high-performance electrocatalysts for oxygen reduction reaction (ORR) is critical for clean energy generation. Here, we propose an approach to the synthesis of iron phthalocyanine nanotubes (FePc NTs) as a highly active and selective electrocatalyst for ORR. The performance is significantly superior to FePc in randomly aggregated and molecularly dispersed states, as well as the commercial Pt/C catalyst. When FePc NTs are anchored on graphene, the resulting architecture shifts the ORR potentials above the redox potentials of Fe2+/3+ sites. This does not obey the redox-mediated mechanism operative on conventional FePc with a Fe2+-N moiety serving as the active sites. Pourbaix analysis shows that the redox of Fe2+/3+ sites couples with HO- ions transfer, forming a HO-Fe3+-N moiety serving as the ORR active sites under the turnover condition. The chemisorption of ORR intermediates is appropriately weakened on the HO-Fe3+-N moiety compared to the Fe2+-N state and thus is intrinsically more ORR active.

2.
Autophagy ; 20(2): 221-241, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37700498

RESUMO

ABBREVIATIONS: ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.


Assuntos
Autofagia , Hepatopatia Gordurosa não Alcoólica , Humanos , Autofagia/genética , Hepatopatia Gordurosa não Alcoólica/genética , Proteína Supressora de Tumor p53 , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais , Alvo Mecanístico do Complexo 1 de Rapamicina , Fatores de Transcrição , GTP Fosfo-Hidrolases , Esteróis , Histona Desmetilases com o Domínio Jumonji , Proteínas de Membrana
3.
J Colloid Interface Sci ; 627: 516-531, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35870404

RESUMO

CO2-splitting and thermochemical energy conversion effectiveness are still challenged by the selectivity of metal/metal oxide-based redox materials and associated chemical reaction constraints. This study proposed an interface/substrate engineering approach for improving CO2-splitting and thermochemical energy conversion through CuFe2O4 and Co3O4 two-layer coating SiC. The newly prepared material reactive surface area available for gas-solid reactions is characterized by micro-pores CuFe2O4 alloy easing inter-layer oxygen micro mass exchanges across a highly stable SiC-Co3O4 layer. Through a thermogravimetry analysis, oxidation of the thermally activated oxygen carriers exhibited remarkably CO2-splitting capacities with a total CO yield of 1919.33 µmol/g at 1300 °C. The further analysis of the material CO2-splitting performance at the reactor scale resulted in 919.04 mL (788.94 µmol/g) of CO yield with an instantaneous CO production rate of 22.52 mL/min and chemical energy density of 223.37 kJ/kg at 1000 °C isothermal redox cycles. The reaction kinetic behavior indicated activation energy of 30.65 kJ/mol, which suggested faster CO2 activation and oxidation kinetic on SiC-Co3O4-CuFe2O4 O-deficit surfaces. The underlying mechanism for the remarkable thermochemical performances was analyzed by combining experiment and density functional theory (DFT) calculations. The significance of exploiting the synergy between CuFe2O4 and Co3O4 layers and stoichiometric reaction characteristics provided fundamental insights useful for the theoretical modeling and practical application of the solar thermochemical process.

4.
Comput Math Methods Med ; 2022: 4312117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047054

RESUMO

Lung infection seriously affects the effect of chemotherapy in patients with lung cancer and increases pain. The study is aimed at establishing the prediction model of infection in patients with lung cancer during chemotherapy by an artificial neural network (ANN). Based on the data of historical cases in our hospital, the variables were screened, and the prediction model was established. A logistic regression (LR) model was used to screen the data. The indexes with statistical significance were selected, and the LR model and back propagation neural network model were established. A total of 80 cases of advanced lung cancer patients with palliative chemotherapy were predicted, and the prediction performance of different model was evaluated by the receiver operating characteristic curve (ROC). It was found that age≧60 years, length of stay≧14 d, surgery history, combined chemotherapy, myelosuppression, diabetes, and hormone application were risk factors of infection in lung cancer patients during chemotherapy. The area under the ROC curve of the LR model for prediction lung infection was 0.729 ± 0.084, which was less than that of the ANN model (0.897 ± 0.045). The results concluded that the neural network model is better than the LR model in predicting lung infection of lung cancer patients during chemotherapy.


Assuntos
Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/tratamento farmacológico , Redes Neurais de Computação , Cuidados Paliativos , Infecções Respiratórias/complicações , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biologia Computacional , Infecção Hospitalar/complicações , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/etiologia , Feminino , Humanos , Modelos Logísticos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Cuidados Paliativos/estatística & dados numéricos , Curva ROC , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/etiologia , Fatores de Risco
5.
Protein Cell ; 13(7): 490-512, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34331666

RESUMO

LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28's role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.


Assuntos
Células-Tronco Pluripotentes , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camundongos , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/genética , RNA Ribossômico , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
6.
Nucleic Acids Res ; 49(22): 12895-12911, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850113

RESUMO

Mixed lineage leukemia 1 (MLL1) is a histone methyltransferase. Kaposi's sarcoma-associated herpesvirus (KSHV) is a leading cause of malignancy in AIDS. KSHV latently infects tumor cells and its genome is decorated with epigenetic marks. Here, we show that KSHV latency-associated nuclear antigen (LANA) recruits MLL1 to viral DNA where it establishes H3K4me3 modifications at the extensive KSHV terminal repeat elements during primary infection. LANA interacts with MLL1 complex members, including WDR5, integrates into the MLL1 complex, and regulates MLL1 activity. We describe the 1.5-Å crystal structure of N-terminal LANA peptide complexed with MLL1 complex member WDR5, which reveals a potential regulatory mechanism. Disruption of MLL1 expression rendered KSHV latency establishment highly deficient. This deficiency was rescued by MLL1 but not by catalytically inactive MLL1. Therefore, MLL1 is LANA regulable and exerts a central role in virus infection. These results suggest broad potential for MLL1 regulation, including by non-host factors.


Assuntos
Antígenos Virais/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Sarcoma de Kaposi/genética , Latência Viral/genética , Antígenos Virais/química , Antígenos Virais/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA Viral/genética , DNA Viral/metabolismo , Técnicas de Silenciamento de Genes , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiologia , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Sarcoma de Kaposi/virologia
7.
Cell Rep ; 37(8): 110040, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818546

RESUMO

Tissue damage induces immediate-early signals, activating Rho small GTPases to trigger actin polymerization essential for later wound repair. However, how tissue damage is sensed to activate Rho small GTPases locally remains elusive. Here, we found that wounding the C. elegans epidermis induces rapid relocalization of CDC-42 into plasma membrane-associated clusters, which subsequently recruits WASP/WSP-1 to trigger actin polymerization to close the wound. In addition, wounding induces a local transient increase and subsequent reduction of H2O2, which negatively regulates the clustering of CDC-42 and wound closure. CDC-42 CAAX motif-mediated prenylation and polybasic region-mediated cation-phospholipid interaction are both required for its clustering. Cysteine residues participate in intermolecular disulfide bonds to reduce membrane association and are required for negative regulation of CDC-42 clustering by H2O2. Collectively, our findings suggest that H2O2-regulated fine-tuning of CDC-42 localization can create a distinct biomolecular cluster that facilitates rapid epithelial wound repair after injury.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Cicatrização/fisiologia , Actinas , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Ciclo Celular/imunologia , Membrana Celular/metabolismo , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Proteínas de Ligação ao GTP/imunologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , Oxirredução , Polimerização , Transdução de Sinais , Família de Proteínas da Síndrome de Wiskott-Aldrich/imunologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Cicatrização/imunologia , Proteínas rho de Ligação ao GTP/metabolismo
8.
Protein Cell ; 12(10): 769-787, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34291435

RESUMO

Chaperone-mediated autophagy (CMA) is a lysosome-dependent selective degradation pathway implicated in the pathogenesis of cancer and neurodegenerative diseases. However, the mechanisms that regulate CMA are not fully understood. Here, using unbiased drug screening approaches, we discover Metformin, a drug that is commonly the first medication prescribed for type 2 diabetes, can induce CMA. We delineate the mechanism of CMA induction by Metformin to be via activation of TAK1-IKKα/ß signaling that leads to phosphorylation of Ser85 of the key mediator of CMA, Hsc70, and its activation. Notably, we find that amyloid-beta precursor protein (APP) is a CMA substrate and that it binds to Hsc70 in an IKKα/ß-dependent manner. The inhibition of CMA-mediated degradation of APP enhances its cytotoxicity. Importantly, we find that in the APP/PS1 mouse model of Alzheimer's disease (AD), activation of CMA by Hsc70 overexpression or Metformin potently reduces the accumulated brain Aß plaque levels and reverses the molecular and behavioral AD phenotypes. Our study elucidates a novel mechanism of CMA regulation via Metformin-TAK1-IKKα/ß-Hsc70 signaling and suggests Metformin as a new activator of CMA for diseases, such as AD, where such therapeutic intervention could be beneficial.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/genética , MAP Quinase Quinase Quinases/genética , Metformina/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Benzotiazóis/farmacologia , Benzilaminas/farmacologia , Linhagem Celular Tumoral , Autofagia Mediada por Chaperonas/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSC70/metabolismo , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Compostos de Fenilureia/farmacologia , Quinazolinas/farmacologia , Ratos , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-33340715

RESUMO

BACKGROUND & AIMS: Defective rostrocaudal colonization of the gut by vagal neural crest cells (vNCCs) results in Hirschsprung's disease (HSCR), which is characterized by aganglionosis in variable lengths of the distal bowel. Skip segment Hirschsprung's disease (SSHD), referring to a ganglionated segment within an otherwise aganglionic intestine, contradicts HSCR pathogenesis and underscores a significant gap in our understanding of the development of the enteric nervous system. Here, we aimed to identify the embryonic origin of the ganglionic segments in SSHD. METHODS: Intestinal biopsy specimens from HSCR patients were prepared via the Swiss-roll technique to search for SSHD cases. NCC migration from the neural tube to the gut was spatiotemporally traced using targeted cell lineages and gene manipulation in mice. RESULTS: After invading the mesentery surrounding the foregut, vNCCs separated into 2 populations: mesenteric NCCs (mNCCs) proceeded to migrate along the mesentery, whereas enteric NCCs invaded the foregut to migrate along the gut. mNCCs not only produced neurons and glia within the gut mesentery, but also continuously complemented the enteric NCC pool. Two new cases of SSHD were identified from 183 HSCR patients, and Ednrb-mutant mice, but not Ret-/- mice, showed a high incidence rate of SSHD-like phenotypes. CONCLUSIONS: mNCCs, a subset of vNCCs that migrate into the gut via the gut mesentery to give rise to enteric neurons, could provide an embryologic explanation for SSHD. These findings lead to novel insights into the development of the enteric nervous system and the etiology of HSCR.


Assuntos
Doença de Hirschsprung/patologia , Crista Neural/patologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/embriologia , Gravidez
10.
Signal Transduct Target Ther ; 5(1): 298, 2020 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-33361760

RESUMO

Sorafenib is the first-line chemotherapeutic therapy for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance significantly limits its therapeutic efficacy, and the mechanisms underlying resistance have not been fully clarified. Here we report that a circular RNA, circRNA-SORE (a circular RNA upregulated in sorafenib-resistant HCC cells), plays a significant role in sorafenib resistance in HCC. We found that circRNA-SORE is upregulated in sorafenib-resistant HCC cells and depletion of circRNA-SORE substantially increases the cell-killing ability of sorafenib. Further studies revealed that circRNA-SORE binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 nuclear interaction with the E3 ubiquitin ligase PRP19 and thus blocks PRP19-mediated YBX1 degradation. Moreover, our in vitro and in vivo results suggest that circRNA-SORE is transported by exosomes to spread sorafenib resistance among HCC cells. Using different HCC mouse models, we demonstrated that silencing circRNA-SORE by injection of siRNA could substantially overcome sorafenib resistance. Our study provides a proof-of-concept demonstration for a potential strategy to overcome sorafenib resistance in HCC patients by targeting circRNA-SORE or YBX1.


Assuntos
Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Circular/metabolismo , RNA Neoplásico/metabolismo , Sorafenibe/farmacologia , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , RNA Circular/genética , RNA Neoplásico/genética , Proteína 1 de Ligação a Y-Box/genética
11.
Nat Commun ; 11(1): 5731, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184293

RESUMO

There is increasing evidence that inducing neuronal mitophagy can be used as a therapeutic intervention for Alzheimer's disease. Here, we screen a library of 2024 FDA-approved drugs or drug candidates, revealing UMI-77 as an unexpected mitophagy activator. UMI-77 is an established BH3-mimetic for MCL-1 and was developed to induce apoptosis in cancer cells. We found that at sub-lethal doses, UMI-77 potently induces mitophagy, independent of apoptosis. Our mechanistic studies discovered that MCL-1 is a mitophagy receptor and directly binds to LC3A. Finally, we found that UMI-77 can induce mitophagy in vivo and that it effectively reverses molecular and behavioral phenotypes in the APP/PS1 mouse model of Alzheimer's disease. Our findings shed light on the mechanisms of mitophagy, reveal that MCL-1 is a mitophagy receptor that can be targeted to induce mitophagy, and identify MCL-1 as a drug target for therapeutic intervention in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/economia , Sobrevivência Celular , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glucose , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Oxigênio , Receptores Citoplasmáticos e Nucleares , Sulfonamidas/farmacologia , Tioglicolatos/farmacologia
12.
Cancer Sci ; 111(10): 3503-3515, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32726482

RESUMO

Hepatocellular carcinoma (HCC) represents the majority of liver cancer and is the fourth most common cause of cancer-related death. Although advances in molecular targeted therapy have shown promise, none of these agents has yet demonstrated significant clinical benefit. Bromo- and extraterminal domain (BET) protein inhibitors have been considered potential therapeutic drugs for HCC but the biological activity remains unclear. This study found that BET protein inhibition did not effectively suppress the progression of HCC, using a transgenic HCC mouse model. Mechanistically, the BET protein inhibitor JQ1 upregulated the expression of programmed cell death-ligand 1 (PD-L1) on the plasma membrane in vivo and in vitro. Moreover, JQ1 enhanced the expression of Rab8A, which upregulated the expression of PD-L1 on the plasma membrane. This study also showed that JQ1 combined with anti-PD-L1 Ab effectively suppressed HCC progression, and this benefit was obtained by enhancing the activation and cytotoxic capabilities of CD8 T cells. These results revealed the crucial role and regulation of BET protein inhibition on the expression of PD-L1 in HCC. Thus, combining BET protein inhibition with immune checkpoint blockade offers an efficient therapeutic approach for HCC.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Células Hep G2 , Humanos , Imunoterapia/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
13.
Transplantation ; 104(11): 2317-2326, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32433238

RESUMO

BACKGROUND: Graft rejection continues to be a major barrier to long-term engraftment after transplantation. Autophagy plays an important role in cardiac injury pathogenesis. The bromodomain and extraterminal protein inhibitor (S)-tert-butyl2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate (JQ1) inhibits inflammatory responses. However, the beneficial effect of JQ1 on transplant and the potential role of autophagy in the protective effect of graft survival are yet to be investigated. METHODS: Syngeneic or allogeneic heterotopic heart transplantation was performed using C57BL/6 or BALB/c donors for C57BL/6 recipients through different treatments. Some mice were used to observe the survival of the grafts. The other mice were euthanized on the third, fifth, and seventh days after surgery. The graft samples were taken for cytokines and autophagy pathway analyses. RESULTS: Our study revealed that JQ1 treatment prolonged cardiac allograft survival. JQ1 increased the expression levels of liver kinase beta 1, autophagy-specific gene 5, and microtubule-associated protein light chain3-II (LC3-II) and potentiated the phosphorylation of AMP-activated protein kinase, unc-51-like kinase 1 (ULK1), and autophagy-specific gene 14 in allografts. A conditional autophagy-specific gene 5 deletion donor was utilized to abrogate the effect induced by JQ1. The combined use of JQ1 with bafilomycin A1 partially reversed the effect of JQ1, suggesting that autophagy is involved in the signaling pathway in graft survival. JQ1 downregulated the expression of inflammatory cytokines, such as interleukin-6, interleukin-1ß, tumor necrosis factor-α, and interferon-γ, which was abrogated when autophagy was inhibited. CONCLUSIONS: JQ1 prolonged cardiac allograft survival by potentiating myocardial autophagy through the liver kinase beta 1-AMP-activated protein kinase-ULK1 signaling pathway and inhibiting the subsequent release of inflammatory cytokines. This result might provide novel insights for extending transplant survival.


Assuntos
Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Coração , Miócitos Cardíacos/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Azepinas/química , Citocinas/metabolismo , Transplante de Coração/efeitos adversos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Fatores de Tempo , Triazóis/química
14.
Science ; 366(6464): 460-467, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649195

RESUMO

The nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2) are intracellular pattern-recognition proteins that activate immune signaling pathways in response to peptidoglycans associated with microorganisms. Recruitment to bacteria-containing endosomes and other intracellular membranes is required for NOD1/2 signaling, and NOD1/2 mutations that disrupt membrane localization are associated with inflammatory bowel disease and other inflammatory conditions. However, little is known about this recruitment process. We found that NOD1/2 S-palmitoylation is required for membrane recruitment and immune signaling. ZDHHC5 was identified as the palmitoyltransferase responsible for this critical posttranslational modification, and several disease-associated mutations in NOD2 were found to be associated with defective S-palmitoylation. Thus, ZDHHC5-mediated S-palmitoylation of NOD1/2 is critical for their ability to respond to peptidoglycans and to mount an effective immune response.


Assuntos
Aciltransferases/metabolismo , Lipoilação , Proteína Adaptadora de Sinalização NOD1/química , Proteína Adaptadora de Sinalização NOD2/química , Transdução de Sinais , Animais , Cisteína/química , Células HCT116 , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidoglicano , Fagossomos/imunologia , Fagossomos/microbiologia , Processamento de Proteína Pós-Traducional , Células RAW 264.7 , Salmonella typhimurium
15.
Theranostics ; 9(13): 3840-3852, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281517

RESUMO

Background and aims: Biological mechanisms that control liver regeneration remain poorly defined. However, these mechanisms are remarkable issues in the clinic that affect management of hepatic loss caused by liver surgery, traumatic injury, chronic infection, or liver poisoning. Increasing evidence has shown that various growth factors, cytokines, and metabolic signaling pathways affect the liver regenerative process. Our aim is to study the effect of bromodomain and extraterminal (BET) protein inhibition on liver regeneration and its mechanism. Methods: We studied the role of BET protein inhibitor, JQ1, in liver regeneration in a mouse model after 70% partial hepatectomy (PH). We evaluated yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) and Notch signaling pathways, which were affected by BET protein inhibitor in mouse hepatic tissues and primary hepatocytes in vivo and AML12 cell lines in vitro. We evaluated the relationship of YAP/TAZ and Notch signaling pathway using YAP/TAZ pathway inhibitor in liver regeneration in vivo. Moreover, we analyzed the relationship of YAP/TAZ and Notch signaling pathways via overexpression or RNA silencing of Yap in AML12 cells. Furthermore, we used Yap overexpression mouse model to examine whether it can rescue liver regeneration damage caused by inhibition of BET proteins. Results: In this study, we report that BET protein inhibitor JQ1 molecule impairs the early phase of liver regeneration in a mouse model after 70% PH. Mechanistically, YAP/TAZ and Notch1-NICD pathways were suppressed by BET protein inhibitor in mouse hepatic tissues and primary hepatocytes in vivo and mouse AML12 cell lines in vitro. By using YAP/TAZ pathway inhibitor, we confirmed that the liver regeneration and the activation of Notch pathway were impaired by the inhibition of YAP/TAZ pathway in vivo. Furthermore, the study showed that Yap knockdown by shRNA in normal mouse hepatic cell line downregulated Notch1 signal transduction, whereas Yap overexpression promoted Notch1-NICD signals. Specific overexpression of Yap in mouse liver could rescue the effect of BET protein inhibition on liver regeneration injury. Conclusion: These results revealed the crucial role of the YAP/TAZ-Notch1-NICD axis in liver regeneration. Therefore, BET protein inhibitors must be used in caution in the treatment of hepatic diseases by reason of its suppressive roles in liver regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regeneração Hepática , Receptor Notch1/química , Receptor Notch1/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Hepatectomia , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Proteínas de Sinalização YAP
16.
Autophagy ; 15(10): 1774-1786, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30957628

RESUMO

Multiple sources contribute membrane and protein machineries to construct functional macroautophagic/autophagic structures. However, the underlying molecular mechanisms remain elusive. Here, we show that RAB2 connects the Golgi network to autophagy pathway by delivering membrane and by sequentially engaging distinct autophagy machineries. In unstressed cells, RAB2 resides primarily in the Golgi apparatus, as evidenced by its interaction and colocalization with GOLGA2/GM130. Importantly, autophagy stimuli dissociate RAB2 from GOLGA2 to interact with ULK1 complex, which facilitates the recruitment of ULK1 complex to form phagophores. Intriguingly, RAB2 appears to modulate ULK1 kinase activity to propagate signals for autophagosome formation. Subsequently, RAB2 switches to interact with autophagosomal RUBCNL/PACER and STX17 to further specify the recruitment of HOPS complex for autolysosome formation. Together, our study reveals a multivalent pathway in bulk autophagy regulation, and provides mechanistic insights into how the Golgi apparatus contributes to the formation of different autophagic structures. Abbreviations: ACTB: actin beta; ATG9: autophagy related 9A; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BCAP31: B cell receptor associated protein 31; BECN1: beclin 1; Ctrl: control; CQ: chloroquine; CTSD: cathepsin D; DMSO: dimethyl sulfoxide; EBSS: Earle's balanced salt solution; EEA1: early endosome antigen 1; GDI: guanine nucleotide dissociation inhibitor; GFP: green fluorescent protein; GOLGA2: golgin A2; HOPS: homotypic fusion and protein sorting complex; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC3: microtubule-associated protein 1 light chain 3; OE: overexpression; PtdIns3K: class III phosphatidylinositol 3-kinase; SQSTM1/p62: sequestosome 1; RAB2: RAB2A, member RAS oncogene family; RAB7: RAB7A, member RAS oncogene family; RAB11: RAB11A, member RAS oncogene family; RUBCNL/PACER: rubicon like autophagy enhancer; STX17: syntaxin 17; TBC1D14: TBC1 domain family member 14; TFRC: transferrin receptor; TGOLN2: trans-golgi network protein 2; TUBB: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VPS41: VPS41, HOPS complex subunit; WB: western blot; WT: wild type; YPT1: GTP-binding protein YPT1.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Lisossomos/metabolismo , Proteína rab2 de Ligação ao GTP/fisiologia , Animais , Células Cultivadas , Células Eucarióticas/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/genética , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína rab2 de Ligação ao GTP/genética
17.
J Cell Physiol ; 234(11): 19406-19419, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31020664

RESUMO

The intestinal mucosal barrier is the first line to defense against luminal content penetration and performs numerous biological functions. The intestinal epithelium contains a huge surface that is lined by a monolayer of intestinal epithelial cells (IECs). IECs are dominant mediators in maintaining intestinal homeostasis that drive diverse functions including nutrient absorption, physical segregation, secretion of antibacterial peptides, and modulation of immune responses. Autophagy is a cellular self-protection mechanism in response to various stresses, and accumulating studies have revealed its importance in participating physiological processes of IECs. The regulatory effects of autophagy depend on the specific IEC types. This review aims to elucidate the myriad roles of autophagy in regulating the functions of different IECs (stem cells, enterocytes, goblet cells, and Paneth cells), and present the progress of autophagy-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide new preventive and therapeutic strategies for gastrointestinal dysfunction and diseases.


Assuntos
Autofagia/genética , Células Epiteliais/metabolismo , Gastroenteropatias/genética , Mucosa Intestinal/metabolismo , Peptídeos Catiônicos Antimicrobianos , Colite/genética , Colite/microbiologia , Colite/patologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Células Caliciformes/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Celulas de Paneth/metabolismo , Celulas de Paneth/microbiologia , Celulas de Paneth/patologia
18.
Mol Cell ; 73(4): 788-802.e7, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30704899

RESUMO

mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.


Assuntos
Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Quinase 3 da Glicogênio Sintase/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Lisina Acetiltransferase 5/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Gotículas Lipídicas/metabolismo , Fígado/patologia , Lisina Acetiltransferase 5/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais , Transativadores/genética , Proteínas Supressoras de Tumor
19.
J Infect Dis ; 219(1): 133-144, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688440

RESUMO

The bacterial pathogen Neisseria gonorrhoeae is able to transmigrate across the mucosal epithelia following the intracellular route and cause disseminated infections. It is currently unknown whether the autophagy pathway is able target intracellular N. gonorrhoeae for destruction in autolysosomes or whether this bacterium is able to escape autophagy-mediated killing. In this study, we demonstrate that during the early stage of epithelial cell invasion, N. gonorrhoeae is targeted by the autophagy pathway and sequestered into double-membrane autophagosomes that subsequently fuse with lysosomes for destruction. However, a subpopulation of the intracellular gonococci is able to escape early autophagy-mediated killing. N. gonorrhoeae is subsequently able to inhibit this pathway, allowing intracellular survival and exocytosis. During this stage, N. gonorrhoeae activates the autophagy repressor mammalian target of rapamycin complex 1 and inhibits autophagosome maturation and lysosome fusion. Thus, our results provide novel insight into the interactions between N. gonorrhoeae and the autophagy pathway during invasion and transcytosis of epithelial cells.


Assuntos
Autofagossomos/metabolismo , Autofagia/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Neisseria gonorrhoeae/metabolismo , Autofagossomos/microbiologia , Autofagossomos/ultraestrutura , Autofagia/imunologia , Células Epiteliais/citologia , Gentamicinas/farmacologia , Gonorreia/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Lisossomos/metabolismo , Viabilidade Microbiana , Neisseria gonorrhoeae/imunologia
20.
Mol Cell ; 67(6): 907-921.e7, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28844862

RESUMO

The class III phosphoinositide 3-kinase VPS34 plays a key role in the regulation of vesicular trafficking and macroautophagy. So far, we know little about the molecular mechanism of VPS34 activation besides its interaction with regulatory proteins to form complexes. Here, we report that VPS34 is specifically acetylated by the acetyltransferase p300, and p300-mediated acetylation represses VPS34 activity. Acetylation at K771 directly diminishes the affinity of VPS34 for its substrate PI, while acetylation at K29 hinders the VPS34-Beclin 1 core complex formation. Inactivation of p300 induces VPS34 deacetylation, PI3P production, and autophagy, even in AMPK-/-, TSC2-/-, or ULK1-/- cells. In fasting mice, liver autophagy correlates well with p300 inactivation/VPS34 deacetylation, which facilitates the clearance of lipid droplets in hepatocytes. Thus, p300-dependent VPS34 acetylation/deacetylation is the physiological key to VPS34 activation, which controls the initiation of canonical autophagy and of non-canonical autophagy in which the upstream kinases of VPS34 can be bypassed.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Hepatócitos/enzimologia , Metabolismo dos Lipídeos , Fígado/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Ativação Enzimática , Feminino , Células HEK293 , Células HeLa , Hepatócitos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição de p300-CBP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA