Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Adv Sci (Weinh) ; 10(27): e2301940, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493331

RESUMO

Sperm-induced Ca2+ rise is critical for driving oocyte activation and subsequent embryonic development, but little is known about how lasting Ca2+ oscillations are regulated. Here it is shown that NLRP14, a maternal effect factor, is essential for keeping Ca2+ oscillations and early embryonic development. Few embryos lacking maternal NLRP14 can develop beyond the 2-cell stage. The impaired developmental potential of Nlrp14-deficient oocytes is mainly caused by disrupted cytoplasmic function and calcium homeostasis due to altered mitochondrial distribution, morphology, and activity since the calcium oscillations and development of Nlrp14-deficient oocytes can be rescued by substitution of whole cytoplasm by spindle transfer. Proteomics analysis reveal that cytoplasmic UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is significantly decreased in Nlrp14-deficient oocytes, and Uhrf1-deficient oocytes also show disrupted calcium homeostasis and developmental arrest. Strikingly, it is found that the mitochondrial Na+ /Ca2+ exchanger (NCLX) encoded by Slc8b1 is significantly decreased in the Nlrp14mNull oocyte. Mechanistically, NLRP14 interacts with the NCLX intrinsically disordered regions (IDRs) domain and maintain its stability by regulating the K27-linked ubiquitination. Thus, the study reveals NLRP14 as a crucial player in calcium homeostasis that is important for early embryonic development.


Assuntos
Cálcio , Nucleosídeo-Trifosfatase , Sêmen , Humanos , Masculino , Cálcio/metabolismo , Homeostase/fisiologia , Oócitos/metabolismo , Sêmen/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Ubiquitinação , Animais , Camundongos , Nucleosídeo-Trifosfatase/metabolismo
2.
J Cancer Res Clin Oncol ; 149(13): 11471-11489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391641

RESUMO

BACKGROUND: Cirrhosis is a serious condition characterized by the replacement of healthy liver tissue with scar tissue, which can progress to liver failure if left untreated. Hepatocellular carcinoma (HCC) is a concerning complication of cirrhosis. It can be challenge to identify individuals with cirrhosis who are at high risk of developing HCC, particularly in the absence of known risk factors. METHODS: In this study, statistical and bioinformatics methods were utilized to construct a protein-protein interaction network and identify disease-related hub genes. We analyzed two hub genes, CXCL8 and CCNB1, and developed a mathematical model to predict the likelihood of developing HCC in individuals with cirrhosis. We also investigated immune cell infiltration, functional analysis under ontology terms, pathway analysis, distinct clusters of cells, and protein-drug interactions. RESULTS: The results indicated that CXCL8 and CCNB1 were associated with the development of cirrhosis-induced HCC. A prognostic model based on these two genes was able to predict the occurrence and survival time of HCC. In addition, the candidate drugs were also discovered based on our model. CONCLUSION: The findings offer the potential for earlier detection of cirrhosis-induced HCC and provide a new instrument for clinical diagnosis, prognostication, and the development of immunological medications. This study also identified distinct clusters of cells in HCC patients using UMAP plot analysis and analyzed the expression of CXCL8 and CCNB1 within these cells, indicating potential therapeutic opportunities for targeted drug therapies to benefit HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Ciclina B1/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Mapas de Interação de Proteínas/genética
3.
Biol Reprod ; 108(6): 887-901, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040346

RESUMO

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cavalos , Animais , Reprogramação Celular , Equidae , Células Cultivadas , Diferenciação Celular/genética , Fibroblastos , Fator 3 de Transcrição de Octâmero/genética
4.
Front Genet ; 14: 1036467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992701

RESUMO

Purpose: To study the accuracy of non-invasive chromosomal screening (NICS) results, in normal chromosomes and chromosomal rearrangement groups and to investigate whether using trophoblast cell biopsy along with NICS, to choose embryos for transfer can improve the clinical outcomes of assisted pregnancy. Methods: We retrospectively analyzed 101 couples who underwent preimplantation genetic testing at our center from January 2019 to June 2021 and collected 492 blastocysts for trophocyte (TE) biopsy. D3-5 blastocyst culture fluid and blastocyst cavity fluid were collected for the NICS. Amongst them, 278 blastocysts (58 couples) and 214 blastocysts (43 couples) were included in the normal chromosomes and chromosomal rearrangement groups, respectively. Couples undergoing embryo transfer were divided into group A, in which both the NICS and TE biopsy results were euploid (52 embryos), and group B, in which the TE biopsy results were euploid and the NICS results were aneuploid (33 embryos). Results: In the normal karyotype group, concordance for embryo ploidy was 78.1%, sensitivity was 94.9%, specificity was 51.4%, the positive predictive value (PPV) was 75.7%, and the negative predictive value (NPV) was 86.4%. In the chromosomal rearrangement group, concordance for embryo ploidy was 73.1%, sensitivity was 93.3%, specificity was 53.3%, the PPV was 66.3%, and the NPV was 89%. In euploid TE/euploid NICS group, 52 embryos were transferred; the clinical pregnancy rate was 71.2%, miscarriage rate was 5.4%, and ongoing pregnancy rate was 67.3%. In euploid TE/aneuploid NICS group, 33 embryos were transferred; the clinic pregnancy rate was 54.5%, miscarriage rate was 5.6%, and ongoingpregnancy rate was 51.5%. The clinical pregnancy and ongoing pregnancy rates were higher in the TE and NICS euploid group. Conclusion: NICS was similarly effective in assessing both normal and abnormal populations. Identification of euploidy and aneuploidy alone may lead to the wastage of embryos due to high false positives. More suitable reporting methods for NICS and countermeasures for a high number of false positives in NICS are needed. In summary, our results suggest that combining biopsy and NICS results could improve the outcomes of assisted pregnancy.

5.
J Pineal Res ; 74(2): e12846, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36428267

RESUMO

With the rapid change of people's lifestyle, more childbearing couples live with irregular schedules (i.e., staying up late) and suffer from decreased fertility and abortion, which can be caused by luteal phase defect (LPD). We used continuous light-exposed mice as a model to observe whether continuous light exposure may affect luteinization and luteal function. We showed that the level of progesterone in serum reduced (p < .001), the number of corpus luteum (CL) decreased (p < .01), and the expressions of luteinization-related genes (Lhcgr, Star, Ptgfr, and Runx2), clock genes (Clock and Per1), and Mt1 were downregulated (p < .05) in the ovaries of mice exposed to continuous light, suggesting that continuous light exposure induces defects in luteinization and luteal functions. Strikingly, injection of melatonin (3 mg/kg) could improve luteal functions in continuous light-exposed mice. Moreover, we found that, after 2 h of hCG injection, the level of pERK1/2 in the ovary decreased in the continuous light group, but increased in the melatonin administration group, suggesting that melatonin can improve LPD caused by continuous light exposure through activating the ERK1/2 pathway. In summary, our data demonstrate that continuous light exposure affects ovary luteinization and luteal function, which can be rescued by melatonin.


Assuntos
Melatonina , Ovário , Feminino , Gravidez , Camundongos , Animais , Ovário/metabolismo , Camundongos Endogâmicos ICR , Melatonina/farmacologia , Melatonina/metabolismo , Corpo Lúteo/metabolismo , Progesterona/metabolismo , Luteinização
6.
Nat Commun ; 13(1): 7732, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513638

RESUMO

Chromosome segregation is initiated by cohesin degradation, which is driven by anaphase-promoting complex/cyclosome (APC/C). Chromosome cohesin is removed by activated separase, with the degradation of securin and cyclinB1. Dynamin-related protein 1 (DRP1), a component of the mitochondrial fission machinery, is related to cyclin dynamics in mitosis progression. Here, we show that DRP1 is recruited to the kinetochore by centromeric Centromere protein F (CENP-F) after nuclear envelope breakdown in mouse oocytes. Loss of DRP1 during prometaphase leads to premature cohesin degradation and chromosome segregation. Importantly, acute DRP1 depletion activates separase by initiating cyclinB1 and securin degradation during the metaphase-to-anaphase transition. Finally, we demonstrate that DRP1 is bound to APC2 to restrain the E3 ligase activity of APC/C. In conclusion, DRP1 is a CENP-F-dependent atypical spindle assembly checkpoint (SAC) protein that modulates metaphase-to-anaphase transition by controlling APC/C activity during meiosis I in oocytes.


Assuntos
Segregação de Cromossomos , Meiose , Animais , Camundongos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dinaminas/metabolismo , Cinetocoros/metabolismo , Oócitos/metabolismo , Securina/genética , Securina/metabolismo , Separase/metabolismo
7.
Elife ; 112022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355419

RESUMO

Alternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor Srsf10 is essential for spermatogenesis and male fertility. In the absence of SRSF10, spermatogonial stem cells can be formed, but the expansion of Promyelocytic Leukemia Zinc Finger (PLZF)-positive undifferentiated progenitors was impaired, followed by the failure of spermatogonia differentiation (marked by KIT expression) and meiosis initiation. This was further evidenced by the decreased expression of progenitor cell markers in bulk RNA-seq, and much less progenitor and differentiating spermatogonia in single-cell RNA-seq data. Notably, SRSF10 directly binds thousands of genes in isolated THY+ spermatogonia, and Srsf10 depletion disturbed the alternative splicing of genes that are preferentially associated with germ cell development, cell cycle, and chromosome segregation, including Nasp, Bclaf1, Rif1, Dazl, Kit, Ret, and Sycp1. These data suggest that SRSF10 is critical for the expansion of undifferentiated progenitors by regulating alternative splicing, expanding our understanding of the mechanism underlying spermatogenesis.


Assuntos
Processamento Alternativo , Espermatogônias , Camundongos , Animais , Masculino , Humanos , Espermatogênese/genética , Diferenciação Celular/genética , Meiose , Camundongos Knockout , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
J Cell Physiol ; 237(9): 3661-3670, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853150

RESUMO

AZD1208, a pan-inhibitor that can effectively inhibit PIM kinase, is used for the treatment of advanced solid tumors and malignant lymphomas. Numerous studies have proved its curative effects while its potential cellular toxicity on reproduction was still little known. In this study, we investigated the toxic effects of AZD1208 on mouse oocytes. The results showed that AZD1208 treatment did not affect meiotic resumption, but postponed oocyte maturation as indicated by delayed first polar body extrusion. Further mechanistic study showed that AZD1208 treatment delayed spindle assembly. In addition, we found that oocytes treated with AZD1208 showed mitochondrial dysfunction. Abnormal mitochondrial clusters with decreased mitochondrial membrane potential were observed in oocytes during incubation in vitro. Moreover, increased oxidative stress was observed by testing the level of reactive oxygen species. In summary, our results suggest that AZD1208 treatment influences oocyte meiotic progression by causing mitochondrial dysfunctions and subsequent delayed spindle assembly.


Assuntos
Compostos de Bifenilo , Oócitos , Animais , Compostos de Bifenilo/farmacologia , Meiose , Camundongos , Mitocôndrias , Oócitos/metabolismo , Tiazolidinas/metabolismo
9.
Clin Transl Med ; 12(7): e891, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858239

RESUMO

BACKGROUND: An impeccable female meiotic prophase is critical for producing a high-quality oocyte and, ultimately, a healthy newborn. SYCP3 is a key component of the synaptonemal complex regulating meiotic homologous recombination. However, what regulates SYCP3 stability is unknown. METHODS: Fertility assays, follicle counting, meiotic prophase stage (leptotene, zygotene, pachytene and diplotene) analysis and live imaging were employed to examine how FBXW24 knockout (KO) affect female fertility, follicle reserve, oocyte quality, meiotic prophase progression of female germ cells, and meiosis of oocytes. Western blot and immunostaining were used to examined the levels & signals (intensity, foci) of SYCP3 and multiple key DSB indicators & repair proteins (γH2AX, RPA2, p-CHK2, RAD51, MLH1, HORMAD1, TRIP13) after FBXW24 KO. Co-IP and immuno-EM were used to examined the interaction between FBXW24 and SYCP3; Mass spec was used to characterize the ubiquitination sites in SYCP3; In vivo & in vitro ubiquitination assays were utilized to determine the key sites in SYCP3 & FBXW24 for ubiquitination. RESULTS: Fbxw24-knockout (KO) female mice were infertile due to massive oocyte death upon meiosis entry. Fbxw24-KO oocytes were defective due to elevated DNA double-strand breaks (DSBs) and inseparable homologous chromosomes. Fbxw24-KO germ cells showed increased SYCP3 levels, delayed prophase progression, increased DSBs, and decreased crossover foci. Next, we found that FBXW24 directly binds and ubiquitinates SYCP3 to regulate its stability. In addition, several key residues important for SYCP3 ubiquitination and FBXW24 ubiquitinating activity were characterized. CONCLUSIONS: We proposed that FBXW24 regulates the timely degradation of SYCP3 to ensure normal crossover and DSB repair during pachytene. FBXW24-KO delayed SYCP3 degradation and DSB repair from pachytene until metaphase II (MII), ultimately causing failure in oocyte maturation, oocyte death, and infertility.


Assuntos
Proteínas de Ciclo Celular , Proteínas F-Box/metabolismo , Meiose , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Meiose/genética , Camundongos , Prófase , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Ubiquitinação/genética
10.
Toxicology ; 476: 153243, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35760214

RESUMO

OTSSP167 is an anti-tumor drug significantly inhibiting tumor growth in xenotransplantation studies using mouse breast, lung, prostate, and pancreatic cancer cell lines. Its phase I clinical trial has been completed, indicating its great potential for future treatment of solid tumors. However, its drug-related adverse effects on reproductive systems have not yet been reported. In this study, we evaluated the effects of OTSSP167 on reproduction of female mice by determining oocyte quality and follicular development. We selected four-week-old female ICR mice for a 21-day intraperitoneal injection of OTSSP167 at a dose of 5 mg/kg/d. We found that OTSSP167 could block the meiotic process of oocytes, leading to a decrease in oocyte maturation and ovulated oocyte numbers, as well as a decrease in the quality of oocytes. The results showed that OTSSP167 treatment caused disordered spindle assembly, decreased mitochondria membrane potential, and increased accumulation of reactive oxygen species in oocytes. Further investigation showed that OTSSP167 induced DNA double-strand breaks, as indicated by increased levels of γH2AX in oocytes of primordial follicles and granulosa cells of growing follicles, which induced follicular atresia and decreased the numbers of follicles at various growing stages. Our study suggests that OTSSP167 treatment may have serious effects on the ovary and consequences for female cancer patients, providing strong evidence for the necessity of protecting female fertility in clinical OTSSP167 trials.


Assuntos
Atresia Folicular , Oócitos , Animais , Feminino , Masculino , Meiose , Camundongos , Camundongos Endogâmicos ICR , Naftiridinas , Oogênese
11.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35546066

RESUMO

Mammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase. Here, we show that protein phosphatase 4 catalytic subunit (PPP4C) deletion causes severe female subfertility due to accumulation of DNA damage in oocytes and early embryos. PPP4C dephosphorylated PLK1 at the S137 site, negatively regulating its activity in the DSB response in early embryonic cells. Depletion of PPP4C induced sustained activity of PLK1 when cells exhibited DNA lesions that inhibited CHK2 and upregulated the activation of CDK1, resulting in inefficient loading of the essential HR factor RAD51. On the other hand, when inhibiting PLK1 in the S phase, DNA end resection was restricted. These results demonstrate that PPP4C orchestrates the switch between high-PLK1 and low-PLK1 periods, which couple the checkpoint to HR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Animais , Proteínas de Ciclo Celular , Linhagem Celular , DNA/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , Desenvolvimento Embrionário/genética , Feminino , Recombinação Homóloga , Mamíferos/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Quinase 1 Polo-Like
12.
Food Funct ; 13(9): 5396-5405, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471225

RESUMO

Maternal diabetes mellitus reduces oocyte quality, such as abnormalities of spindle assembly and chromosome segregation, mitochondrial dysfunction, decrease of fertilization rate, increase of ROS, and so on. So, it is important to research how to restore the decreased oocyte quality induced by maternal diabetes mellitus. Polyphenols are the most abundant bioactive components of green tea. It is reported that tea polyphenols have many health functions, for instance anti-oxidation, anti-inflammation, anti-obesity, and anti-diabetes. Thus, we hypothesize that tea polyphenols may play a crucial role in alleviating adverse effects of diabetes on oocyte quality. In the present study, we researched the effects of tea polyphenols on diabetic oocyte maturation in vitro. Compared with the control, oocytes from diabetic mice displayed a lower maturation rate and a higher frequency of spindle defects and chromosome misalignment. However, tea polyphenols significantly increased the oocyte maturation rate, and reduced the incidence of abnormal spindle assembly and chromosome segregation. Tea polyphenols also obviously decreased the reactive oxygen species (ROS) levels in diabetic oocytes, and increased the expression of antioxidant genes (Sod1 and Sod2). Abnormal mitochondrial membrane potential was also alleviated in diabetic oocytes, and the expression of genes regulating mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1) was significantly increased while tea polyphenols were added. Meanwhile, tea polyphenols reduced DNA damage in diabetic oocytes which may be mediated by the increased expression of Rad51, related to DNA damage repair. Our results suggest that tea polyphenols would, at least partially, restore the adverse effects of diabetes mellitus on oocyte quality.


Assuntos
Diabetes Mellitus Experimental , Polifenóis , Animais , Diabetes Mellitus Experimental/metabolismo , Camundongos , Mitocôndrias , Oócitos , Polifenóis/metabolismo , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Chá/metabolismo
13.
Cell Death Differ ; 29(2): 366-380, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34635817

RESUMO

Many integral membrane proteins might act as indispensable coordinators in specific functional microdomains to maintain the normal operation of known receptors, such as Notch. Gm364 is a multi-pass transmembrane protein that has been screened as a potential female fertility factor. However, there have been no reports to date about its function in female fertility. Here, we found that global knockout of Gm364 decreased the numbers of primordial follicles and growing follicles, impaired oocyte quality as indicated by increased ROS and γ-H2AX, decreased mitochondrial membrane potential, decreased oocyte maturation, and increased aneuploidy. Mechanistically, Gm364 directly binds and anchors MIB2, a ubiquitin ligase, on the membrane. Subsequently, membrane MIB2 ubiquitinates and activates DLL3. Next, the activated DLL3 binds and activates Notch2, which is subsequently cleaved within the cytoplasm to produce NICD2, the intracellular active domain of Notch2. Finally, NICD2 can directly activate AKT within the cytoplasm to regulate oocyte meiosis and quality.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Fertilidade , Proteínas de Membrana/metabolismo , Folículo Ovariano/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo
14.
Food Funct ; 12(21): 10311-10323, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610081

RESUMO

Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.


Assuntos
Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Chá , Animais , Feminino , Humanos , Ratos
15.
Cell Death Dis ; 12(11): 989, 2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34689175

RESUMO

Proper follicle development is very important for the production of mature oocytes, which is essential for the maintenance of female fertility. This complex biological process requires precise gene regulation. The most abundant modification of mRNA, N6-methyladenosine (m6A), is involved in many RNA metabolism processes, including RNA splicing, translation, stability, and degradation. Here, we report that m6A plays essential roles during oocyte and follicle development. Oocyte-specific inactivation of the key m6A methyltransferase Mettl3 with Gdf9-Cre caused DNA damage accumulation in oocytes, defective follicle development, and abnormal ovulation. Mechanistically, combined RNA-seq and m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) data from oocytes revealed, that we found METTL3 targets Itsn2 for m6A modification and then enhances its stability to influence the oocytes meiosis. Taken together, our findings highlight the crucial roles of mRNA m6A modification in follicle development and coordination of RNA stabilization during oocyte growth.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , Oócitos/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Adenosina/metabolismo , Animais , Feminino , Camundongos
16.
Nat Cell Biol ; 23(6): 664-675, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108658

RESUMO

RNA-binding proteins (RBPs) have essential functions during germline and early embryo development. However, current methods are unable to identify the in vivo targets of a RBP in these low-abundance cells. Here, by coupling RBP-mediated reverse transcription termination with linear amplification of complementary DNA ends and sequencing, we present the LACE-seq method for identifying RBP-regulated RNA networks at or near the single-oocyte level. We determined the binding sites and regulatory mechanisms for several RBPs, including Argonaute 2 (Ago2), Mili, Ddx4 and Ptbp1, in mature mouse oocytes. Unexpectedly, transcriptomics and proteomics analysis of Ago2-/- oocytes revealed that Ago2 interacts with endogenous small interfering RNAs (endo-siRNAs) to repress mRNA translation globally. Furthermore, the Ago2 and endo-siRNA complexes fine-tune the transcriptome by slicing long terminal repeat retrotransposon-derived chimeric transcripts. The precise mapping of RBP-binding sites in low-input cells opens the door to studying the roles of RBPs in embryonic development and reproductive diseases.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Oócitos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq , Transcriptoma
17.
J Cell Physiol ; 236(10): 7001-7013, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33724469

RESUMO

Parathyroid hormone-related protein (PTHrP), the main cause of humoral hypercalcemia in malignancies, promotes cell proliferation and delays terminal cell maturation during embryonic development. Our previous study reported that PTHrP plays important roles in blastocyst formation, pluripotency gene expression, and histone acetylation during mouse preimplantation embryonic development. In this study, we further investigated the mechanism of preimplantation embryonic development regulated by PTHrP. Our results showed that Pthrp depletion decreased both the developmental rate of embryos at the cleavage stage and the cell number of morula-stage embryos. Pthrp-depleted embryos had significantly decreased levels of cyclin D1, phospho (p)-AKT (Thr308) and E2F1. However, Pthrp depletion did not cause significant changes in CDK4, ß-catenin or RUNX2 expression. In addition, our results indicated that Pthrp depletion promoted HDAC4 translocation from the cytoplasm to the nucleus in cleavage-stage embryos by stimulating the activity of protein phosphatase 2A (PP2A), which resulted in dephosphorylation of HDAC4. Taken together, these results suggest that PTHrP regulates cleavage division progression and blastocyst formation through the AKT/cyclin D1 pathway and that PTHrP modulates histone acetylation patterns through nuclear translocation of HDAC4 via PP2A-dependent HDAC4 dephosphorylation during preimplantation embryonic development in mice.


Assuntos
Blastocisto/metabolismo , Ciclina D1/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular , Animais , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Transdução de Sinais
18.
Toxicology ; 452: 152705, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33548356

RESUMO

Gefitinib is a first-line anti-cancer drug for the treatment of advanced non-small cell lung cancer (NSCLC). It has been reported that gefitinib can generate several drug-related adverse effects, including nausea, peripheral edema, decreased appetite and rash. However, the reproductive toxicity of gefitinib has not been clearly defined until now. Here we assessed the effects of gefitinib on oocyte quality by examining the critical events and molecular changes of oocyte maturation. Gefitinib at 1, 2, 5 or 10 µM concentration was added to culture medium (M2). We found that gefitinib at its median peak concentration of 1 µM did not affect oocyte maturation, but 5 µM gefitinib severely blocked oocyte meiotic progression as indicated by decreased rates of germinal vesicle breakdown (GVBD) and polar body extrusion (PBE). We further showed that gefitinib treatment increased phosphorylation of CDK1 at the site of Try15, inhibited cyclin B1 entry into the nucleus, and disrupted normal spindle assembly, chromosome alignment and mitochondria dynamics, finally leading to the generation of aneuploidy and early apoptosis of oocytes. Our study reported here provides valuable evidence for reproductive toxicity of gefitinib administration employed for the treatment of cancer patients.


Assuntos
Antineoplásicos/toxicidade , Gefitinibe/toxicidade , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Oócitos/metabolismo , Oócitos/patologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/patologia
19.
Cell Discov ; 6(1): 97, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372178

RESUMO

Germ cells are vital for reproduction and heredity. However, the mechanisms underlying female germ cell development in primates, especially in late embryonic stages, remain elusive. Here, we performed single-cell RNA sequencing of 12,471 cells from whole fetal ovaries, and explored the communications between germ cells and niche cells. We depicted the two waves of oogenesis at single-cell resolution and demonstrated that progenitor theca cells exhibit similar characteristics to Leydig cells in fetal monkey ovaries. Notably, we found that ZGLP1 displays differentially expressed patterns between mouse and monkey, which is not overlapped with NANOG in monkey germ cells, suggesting its role in meiosis entry but not in activating oogenic program in primates. Furthermore, the majority of germ cell clusters that sharply express PRDM9 and SPO11 might undergo apoptosis after cyst breakdown, leading to germ cell attrition. Overall, our work provides new insights into the molecular and cellular basis of primate fetal ovary development at single-cell resolution.

20.
Reprod Toxicol ; 96: 141-149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574675

RESUMO

Cadmium (Cd) is a bioaccumulative heavy metal element with potential toxicity on the female reproductive system, but the exact molecular mechanisms have not yet been clearly defined. In this study, female mice were exposed to 0.5 mg/kg/day of CdCl2 for 60 consecutive days. We found that chronic Cd exposure significantly decreased the fecundity of female mice by affecting oocyte meiotic progression as indicated by disrupted spindle assembly, chromosome alignment and kinetochore-microtubule attachments, consequently resulting in aneuploid oocytes. Further studies showed that the periodic fluctuations of MPF activity and cyclin B1 expression were disturbed in Cd-exposed oocytes probably by affecting the spindle assembly checkpoint protein Bub3. In addition, Cd exposure induced oxidative stress as indicated by an increased level of reactive oxygen species and apoptosis in oocytes, leading to oocyte quality deterioration. Taken together, these data suggest that Cd exposure causes disrupted molecular events of meiotic progression and deterioration of oocyte quality via oxidative stress, leading to decrease of female fertility.


Assuntos
Cloreto de Cádmio/toxicidade , Oócitos/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Fertilidade/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Fator Promotor de Maturação/metabolismo , Meiose/efeitos dos fármacos , Camundongos Endogâmicos ICR , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA