Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Med Biochem ; 43(2): 226-233, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38699692

RESUMO

Background: To observe the basic metabolic characteristics of obese patients with polycystic ovarian syndrome (PCOS), and observe and compare the effect of laparoscopic sleeve gastrectomy and metformin treatment after 3 months. Methods: In January to December 2018, the Second Hospital of Hebei Medical University selected 104 women who were classified as obese with a body mass index (BMI) of 28 kg/cm2 or higher and had PCOS. They were divided into obese PCOS group (53 cases) and obese non-PCOS group (51 cases). Results: 1. There was no significant difference in waist circumference and WHR between patients who are obese with PCOS and patients who are obese without PCOS (P > 0.05). Obese PCOS patients were significantly higher in anti-Müllerian hormone (AMH), LH/FSH, T, FAI, homa-ir, triglyceride (TG), low density lipoprotein (LDL), Apo-B and uric acid than the group of non-PCOS patients who were obese. (P<0.05). The SHBG levels of obese patients with PCOS were obviously lower when contrasted with the levels in obese patients without PCOS (P < 0.05). 2. Body weight, BMI, INS, homa-ir and TG of obese PCOS patients were significantly decreased 3 months after laparoscopic sleeve gastrectomy compared with that before surgery (P < 0.05). After three months of medical treatment with metformin, the patients' homeostatic model assessment of insulin resistance (HOMA-IR) was obviously reduced when contrasted with the pre-treatment HOMA-IR levels (P < 0.05), and there was no significant difference in the improvement degree of homa-ir between the two groups (P > 0.05). Conclusions: 1. Obese patients with PCOS demonstrated higher expression of AMH, LH/FSH, T, SHBG, and FAI when contrasted with the control group. Additionally, they experienced more severe insulin resistance and lipid metabolism disorders. 2. The weight and BMI of obese PCOS patients were significantly decreased after weight loss, while IR and blood lipid were significantly improved, while IR was improved in metformin group, and no significant discrepancy was observed in the degree of improvement of insulin resistance between both groups.

2.
Adv Sci (Weinh) ; : e2302379, 2024 Apr 02.
Artigo em Italiano | MEDLINE | ID: mdl-38566431

RESUMO

The modification and recognition of 5-methylcytosine (m5C) are involved in the initiation and progression of various tumor types. However, the precise role and potential mechanism of Y-box-binding protein 1 (YBX1) in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, it is found that YBX1 is frequently upregulated in ESCC compared with matched nontumor tissues. Gain- and loss-of-function assays show that YBX1 promoted the proliferation and metastasis of ESCC cells both in vitro and in vivo. Functional studies revealed that NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a critical RNA methyltransferase that facilitates YBX1-mediated ESCC progression. Mechanistically, integrated analysis based on RNA immunoprecipitation sequencing (RIP-seq) and m5C methylated RNA immunoprecipitation and sequencing (MeRIP-seq) assays identified spermine oxidase (SMOX) as a target gene containing an m5C site in its coding sequence (CDS) region, which coincided well with the binding site of YBX1. Overexpression of SMOX-WT but not SMOX-Mut partially restored the proliferation and invasion ability of ESCC cells curbed by YBX1 knockdown. Moreover, YBX1 activated the mTORC1 signaling pathway by stabilizing SMOX mRNA. The study reveals that YBX1 promotes ESCC development by stabilizing SMOX mRNA in an m5C-dependent manner, thus providing a valuable therapeutic target for ESCC.

3.
Cell Mol Life Sci ; 81(1): 79, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334836

RESUMO

Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/ß-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3ß that destructs ß-catenin, while ligand-receptor interaction impairs GSK-3ß function to increase ß-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/ß-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance ß-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/ß-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/ß-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.


Assuntos
Neoplasias , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética
5.
Front Endocrinol (Lausanne) ; 14: 1260623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027114

RESUMO

Type 2 diabetes (T2D) is the leading cause of diabetes worldwide and is increasing rapidly, especially in youth. It accounts for most diabetes deaths in adults ≥20 years old in the Americas, with type 2 diabetes responsible for most of the disease burden. The incidence and burden of type 2 diabetes in adolescents and young adults have risen in recent decades globally. Countries with lower socioeconomic status had the highest incidence and burden, and females generally had higher mortality and disease burden than males at ages <30 years. Early diagnosis and management are crucial to delaying progression, but current diagnostic criteria based on glucose thresholds and glycated hemoglobin have limitations. Recent analyses show that prediabetes increases cancer risk. Better diagnostic criteria are urgently needed to identify high-risk individuals earlier. This article discusses the limitations of current criteria and explores alternative approaches and future research directions.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Masculino , Feminino , Adulto Jovem , Adolescente , Humanos , Adulto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Glicemia/análise , Detecção Precoce de Câncer , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/epidemiologia , Hemoglobinas Glicadas
6.
Cell Death Discov ; 9(1): 219, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393317

RESUMO

NSUN2 is a nuclear RNA methyltransferase which catalyzes 5-methylcytosine (m5C), a posttranscriptional RNA modification. Aberrant m5C modification has been implicated in the development of multiple malignancies. However, its function in pancreatic cancer (PC) needs to be elucidated. Herein, we determined that NSUN2 was overexpressed in PC tissues and related to aggressive clinical features. Silence of NSUN2 by lentivirus weakened the capability of proliferation, migration and invasion of PC cells in vitro and inhibited the growth and metastasis of xenograft tumors in vivo. Contrarily, overexpression of NSUN2 stimulated PC growth and metastasis. Mechanistically, m5C-sequencing (m5C-seq) and RNA-sequencing (RNA-seq) were carried out to identify downstream targets of NSUN2 and results showed that loss of NSUN2 led to decreased m5C modification level concomitant with reduced TIAM2 mRNA expression. Further validation experiments proved that NSUN2 silence accelerated the decay of TIAM2 mRNA in a YBX1-dependent manner. Additionally, NSUN2 exerted its oncogenic function partially through enhancing TIAM2 transcription. More importantly, disruption of the NSUN2/TIAM2 axis repressed the malignant phenotype of PC cells through blocking epithelial-mesenchymal transition (EMT). Collectively, our study highlighted the critical function of NSUN2 in PC and provided novel mechanistic insights into NSUN2/TIAM2 axis as promising therapeutic targets against PC.

7.
Front Pharmacol ; 14: 1172908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180696

RESUMO

Background: Ubiquitin-proteasome system (UPS) is implicated in cancer occurrence and progression. Targeting UPS is emerging as a promising therapeutic target for cancer treatment. Nevertheless, the clinical significance of UPS in hepatocellular carcinoma (HCC) has not been entirely elucidated. Methods: Differentially expressed UPS genes (DEUPS) were screened from LIHC-TCGA datasets. The least absolute shrinkage and selection operator (LASSO) and stepwise multivariate regression analysis were conducted to establish a UPS-based prognostic risk model. The robustness of the risk model was further validated in HCCDB18, GSE14520, and GSE76427 cohorts. Subsequently, immune features, clinicopathologic characteristics, enrichment pathways, and anti-tumor drug sensitivity of the model were further evaluated. Moreover, a nomogram was established to improve the predictive ability of the risk model. Results: Seven UPS-based signatures (ATG10, FBXL7, IPP, MEX3A, SOCS2, TRIM54, and PSMD9) were developed for the prognostic risk model. Individuals with HCC with high-risk scores presented a more dismal prognosis than those with low-risk scores. Moreover, larger tumor size, advanced TNM stage, and tumor grade were observed in the high-risk group. Additionally, cell cycle, ubiquitin-mediated proteolysis, and DNA repair pathways were intimately linked to the risk score. In addition, obvious immune cell infiltration and sensitive drug response were identified in low-risk patients. Furthermore, both nomogram and risk score showed a significant prognosis-predictive ability. Conclusion: Overall, we established a novel UPS-based prognostic risk model in HCC. Our results will facilitate a deep understanding of the functional role of UPS-based signature in HCC and provide a reliable prediction of clinical outcomes and anti-tumor drug responses for patients with HCC.

8.
Front Pharmacol ; 14: 1145408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909154

RESUMO

Background: Recent studies highlighted the functional role of protein arginine methyltransferases (PRMTs) catalyzing the methylation of protein arginine in malignant progression of various tumors. Stratification the subtypes of hepatocellular carcinoma (HCC) is fundamental for exploring effective treatment strategies. Here, we aim to conduct a comprehensive analysis of PRMTs with bioinformatic tools to identify novel biomarkers for HCC subtypes classification and prognosis prediction, which may be potential ideal targets for therapeutic intervention. Methods: The expression profiling of PRMTs in HCC tissues was evaluated based on the data of TCGA-LIHC cohort, and further validated in HCC TMA cohort and HCC cell lines. HCC was systematically classified based on PRMT family related genes. Subsequently, the differentially expressed genes (DEGs) between molecular subtypes were identified, and prognostic risk model were constructed using least absolute shrinkage and selection operator (LASSO) and Cox regression analysis to evaluate the prognosis, gene mutation, clinical features, immunophenotype, immunotherapeutic effect and antineoplastic drug sensitivity of HCC. Results: PRMTs expression was markedly altered both in HCC tissues and HCC cell lines. Three molecular subtypes with distinct immunophenotype were generated. 11 PRMT-related genes were enrolled to establish prognostic model, which presented with high accuracy in predicting the prognosis of two risk groups in the training, validation, and immunotherapy cohort, respectively. Additionally, the two risk groups showed significant difference in immunotherapeutic efficacy. Further, the sensitivity of 72 anticancer drugs was identified using prognostic risk model. Conclusion: In summary, our findings stratified HCC into three subtypes based on the PRMT-related genes. The prognostic model established in this work provide novel insights into the exploration of related therapeutic approaches in treating HCC.

9.
Ecotoxicol Environ Saf ; 229: 113097, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942422

RESUMO

Chemical pesticides and adjuvants have caused many negative effects. Botanical compounds provide solutions for the development of environment friendly pesticides and the management of increasing pest resistance. Curcumin, a natural polyphenol, showed synergistic effects on avermectin upon the destructive agricultural pest, Spodoptera litura. However, the botanical synergist and its relevant mechanisms remain unclear. In the article, curcumin significantly enhanced the growth inhibition and midgut structural damage of avermectin on the larvae of S. litura, and the synergistic effects were confirmed with pot experiments. There were only a few influences on the gene expression of avermectin targets, while apoptotic and autophagic related genes and proteins were accumulated in the avermectin/curcumin mixed regent (0.013/0.0013 µg/mL) treated group. Moreover, the potential mechanism was explored with an in vitro model, insect Spodoptera frugiperda Sf9 cell line. Morphology observation featured the damage on cells and Hoechst33258 staining revealed the fragments of DNA after treating with the avermectin/curcumin mixed regent (10/1 µg/mL). Dansylcadaverine and LysoTracker staining, as well as the gene expressions, supposed that curcumin exhibited autophagy inducing effects and the mixed regent possessed a higher ability to induce apoptosis and autophagy. All these results suggested that the synergistic effects of curcumin on the pest management of avermectin potentially mainly derived from the enhancement of programed cell death. It provides new sights for the application of natural compounds in integrated pest management and enriches examples of synergistic mechanisms.


Assuntos
Curcumina , Animais , Apoptose , Curcumina/farmacologia , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva , Spodoptera
10.
Front Cell Dev Biol ; 9: 687756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277630

RESUMO

Background: Immunotherapy elicits durable responses in many tumors. Nevertheless, the positive response to immunotherapy always depends on the dynamic interactions between the tumor cells and infiltrating lymphocytes in the tumor microenvironment (TME). Currently, the application of immunotherapy in hepatocellular carcinoma (HCC) has achieved limited success. The ectopic modification of N6-methyladenosine (m6A) is a common feature in multiple tumors. However, the relationship between m6A modification with HCC clinical features, prognosis, immune cell infiltration, and immunotherapy efficacy remains unclear. Materials and Methods: Here, we comprehensively evaluated m6A modification clusters based on 22 m6A regulators and systematically explored the relationship between m6A modification with tumor progression, prognosis, and immune cell infiltration characteristics. The m6Ascore was calculated by principal component analysis to quantify the m6A modifications of individual patients. Key regulators involved in immunoregulation in HCC were identified using immunohistochemistry and immunofluorescence. Results: Three distinct m6A modification clusters were identified. The m6A clusters were significantly associated with clinical features, prognosis, and immune cell infiltration. The three clusters were highly consistent with the three tumor immune phenotypes, i.e., immune-excluded, immune-inflamed, and immune-desert. Comprehensive bioinformatics analysis revealed that high m6Ascore was closely associated with tumor progression, poor prognosis, and immunotherapy non-response. m6A regulators were dysregulated in HCC tissues. Hence, they play a role as predictors of poor prognosis. Tissue microarray demonstrated that overexpressed YTHDF1 was associated with low CD3+ and CD8+ T cell infiltration in HCC. Conclusion: Our findings demonstrate that m6A modification patterns play a crucial role in the tumor immune microenvironment and the prognosis of HCC. High YTHDF1 expression is closely associated with low CD3+ and CD8+ T cell infiltration in HCC.

11.
Biochem Biophys Res Commun ; 533(4): 845-852, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008587

RESUMO

Hepatocellular Carcinoma (HCC) is the main histological subtype of liver malignancy with poor prognosis. A growing body of evidence showed that Circular RNAs (circRNAs) are related to HCC tumorigenesis and progression. In this study, we investigated the function and regulation of circ-0038718 in HCC. We found that circ-0038718 was frequently elevated in HCC specimens and cell lines. High expression levels of circ-0038718 were correlated with unfavorable prognosis in HCC patients. Furthermore, we demonstrated that knockdown of circ-0038718 attenuated HCC cell proliferation and metastatic abilities, while overexpression of circ-0038718 resulted the converse effect. Silencing circ-0038717 inhibited HCC xenograft tumor development in vivo. Mechanistically, circ-0038718 acted as the sponge of tumor-suppressive miR-139-3p to regulate HCC progression. Rescue experiments suggested the oncogenic activity of circ-0038718 was partially exerted via modulating miR-139-3p expression. Inhibition of miR-139-3p abrogated the regulatory effect of circ-0038718 in HCC cells. In summary, our results unveiled that circ-0038718 could serve as an crucial regulator of HCC progression and provide a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos Nus , Invasividade Neoplásica , Prognóstico , RNA Circular/fisiologia
12.
Front Oncol ; 10: 769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582536

RESUMO

Background: Osteosarcoma (OS) is the most common primary bone tumor. The disease has a poor prognosis due to the delay in the diagnosis and the development of metastasis. N6-Methyladenosine (m6A)-related regulators play an essential role in various tumors. In this study, a comprehensive analysis was conducted to elucidate the relationship between the expression profiles of m6A-related molecules and the clinical outcome of OS patients. Materials and Methods: Public genome datasets and a tissue microarray (TMA) cohort were used to analyze the mRNA and protein expression levels of m6A regulators. Next, immunofluorescence (IF) analysis was used to determine the subcellular localization of m6A-related molecules. Kaplan-Meier and Cox regression analyses were performed to confirm the prognostic value of m6A-related molecules in OS. A comprehensive bioinformatic analysis was conducted to identify the potential molecular mechanisms mediated by m6A modification in OS. Results: We found that m6A-related regulator expression was dysregulated in OS tissues, especially in metastatic tumor tissues. Low expression of METTL3, METTL14, and YTHDF2 and high expression of KIAA1429 and HNRNPA2B1 were significantly associated with poor prognosis in the TMA cohort. Simultaneously, the genome meta-cohort analysis revealed that low expression of FTO and METTL14 and high expression of METTL3, HNRNPA2B1, and YTHDF3 were associated with poor prognosis in OS. Cox regression analysis showed that HNRNPA2B1 might be an independent risk factor for OS. Bioinformatic analysis indicated that m6A regulators might be involved in OS progression through humoral immune response and cell cycle pathways. Conclusion: M6A-related regulators are frequently dysregulated and correlate with metastasis and prognosis in OS. M6A-related regulators may serve as novel therapeutic targets and prognostic biomarkers for OS.

13.
J Cancer ; 11(10): 3027-3040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226518

RESUMO

Purpose: Gastric cancer (GC) is a primary cause of cancer-associated mortality worldwide. N6-methyladenosine (m6A) is one of the most common RNA modifications that involves in the progression of numerous cancers. However, the expression status and function of m6A-related genes in gastric cancer is still not well understood. The current study is aimed to investigate the expression status and determinate prognostic value of m6A-related genes in gastric cancer. Methods: m6A-asssociated gene expression was evaluated via analyzing the expression data of GC patients from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The protein expression levels of m6A-associated molecules were further validated by immunohistochemical (IHC) staining data from GC tissue microarray (TMA) cohort and Human Protein Atlas (HPA) database. Kaplan-Meier analysis was performed to assess the prognostic value of m6A-associated genes in gastric cancer. Risk score model was established by lasso COX regression analysis and its prognostic predicted efficiency was assessed by the receiver-operator characteristic (ROC) curve. Cox regression analyses were used for exploring risk factors related to GC patient prognosis. Results: Most of m6A-related genes were upregulated at both mRNA and protein levels in gastric cancer tissues compared with that in normal gastric tissues. The expression levels of m6A-related genes were associated with clinicopathological features including race, age and TNM stage. High expression of WTAP and FTO predicted poor prognosis of GC patients. Survival analysis demonstrated that patients with high-risk scores had worse overall survival (OS) and ROC curves suggested the prediction performance for gastric patients. Moreover, Cox regression analyses indicated that m6A risk model score was a prognostic factor for OS and FTO upregulation might be a potential independent prognostic factor for recurrence-free survival (RFS) in gastric cancer patients. Conclusion: m6A-related genes were dysregulated in GC and were closely associated with prognosis of GC patients. FTO might serve as a novel prognostic biomarker for gastric cancer, while the m6A-related risk score might be informative for risk assessment and prognostic stratification.

14.
Front Cell Dev Biol ; 8: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083078

RESUMO

Several lines of evidence have confirmed the magnitude of crosstalk between HGF/c-Met axis (hepatocyte growth factor and its high-affinity receptor c-mesenchymal-epithelial transition factor) and non-coding RNAs (ncRNAs) in tumorigenesis. Through activating canonical or non-canonical signaling pathways, the HGF/c-Met axis mediates a range of oncogenic processes such as cell proliferation, invasion, apoptosis, and angiogenesis and is increasingly becoming a promising target for cancer therapy. Meanwhile, ncRNAs are a cluster of functional RNA molecules that perform their biological roles at the RNA level and are essential regulators of gene expression. The expression of ncRNAs is cell/tissue/tumor-specific, which makes them excellent candidates for cancer research. Many studies have revealed that ncRNAs play a crucial role in cancer initiation and progression by regulating different downstream genes or signal transduction pathways, including HGF/c-Met axis. In this review, we discuss the regulatory association between ncRNAs and the HGF/c-Met axis by providing a comprehensive understanding of their potential mechanisms and roles in cancer development. These findings could reveal their possible clinical applications as biomarkers for therapeutic interventions.

15.
Med Sci Monit ; 26: e919644, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32086933

RESUMO

BACKGROUND Lung adenocarcinoma (LUAD) is the most common subtype of lung malignancy and is the leading cause of cancer-related mortalities worldwide. N6-methyladenosine (m6A), the most prevalent internal modification of mRNAs, plays crucial roles in regulating mRNA splicing, exportation, localization, translation, and stability. This study assessed the expression patterns and prognostic value of m6A-related genes in LUAD. MATERIAL AND METHODS The expression data of 509 LUAD samples and 20 normal samples were obtained from the Cancer Genome Atlas (TCGA) to determine the mRNA expression levels of m6A-related genomic targets. mRNA expression of 6 LUAD datasets was obtained from the Gene Expression Omnibus (GEO) repository. Subsequently, the Human Protein Atlas (HPA) and tissue microarray (TMA) cohort were used to verify the expression pattern of m6A-related genes at mRNA and protein level. The t test was used to analyze correlations between m6A-related genes and clinical features. Finally, survival analysis was performed to assess the prognostic value of m6A-related genes in LUAD patients. RESULTS We found that KIAA1429, RBM15, METTL3, HNRNPC, HNRNPA2B1, YTHDF1, and YTHDF2 were upregulated in TCGA-LUAD databases. The analysis of 7 GEO databases was consistent with the TCGA. YTHDF1 was overexpressed in LUAD patients and YTHDF2 was overexpressed in the great majority of cases. METTL3, YTHDF1, and YTHDF2 were associated with better OS and RFS. CONCLUSIONS m6A-related genes were differentially expressed in LUAD compared to matched normal patients. The m6A-related genes METTL3, YTHDF1, and YTHDF2 could serve as novel biomarkers for the prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenosina/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/patologia , Adenosina/metabolismo , Estudos de Coortes , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Cell Prolif ; 53(3): e12768, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31967701

RESUMO

OBJECTIVES: N6-methyladenosine (m6A) is a ubiquitous epigenetic RNA modification that plays a pivotal role in tumour development and metastasis. In this study, we aimed to investigate the expression profiling, clinical significance, biological function and the regulation of m6A-related genes in hepatoblastoma (HB). MATERIALS AND METHODS: The mRNA and protein expression levels of m6A-related genes were analysed using Gene Expression Omnibus (GEO) and tissue microarray (TMA) cohort. Kaplan-Meier analysis was performed to evaluate the prognostic value of m6A-related genes in HB. Knockdown of m6A-related genes was conducted to analyse its function on cell proliferation, migration and invasion. Furthermore, bioinformatics analysis and experimental verification were used to explore the potential molecular mechanism and signalling pathway. RESULTS: We found that most m6A-related genes were significantly upregulated in HB tumour tissues. High levels of methyltransferase-like 3 (METTL3, P = .013), YTHDF2 (P = .037) and FTO (P = .032) indicated poor clinical outcomes, and the upregulation of METTL3 was an independent prognostic factor in HB patients. Functional assays showed that knockdown of METTL3 could dramatically suppress the proliferation, migration and invasion of HB cells. In addition, METTL3 was identified to be a direct target of microRNA-186 (miR-186). Consistently, miR-186 was low expressed in HB tumour tissues. Moreover, overexpression of miR-186 significantly inhibited cell aggressive phenotype both in vitro and in vivo, while the inhibitory effect could be reversed by METTL3 overexpression. Mechanism study indicated that miR-186/METTL3 axis contributed to the progression of HB via the Wnt/ß-catenin signalling pathway. CONCLUSIONS: M6A-related genes were frequently dysregulated in HB. miR-186/METTL3/Wnt/ß-catenin axis might serve as novel therapeutic targets and prognostic biomarkers in HB.


Assuntos
Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética , MicroRNAs/genética , Adenosina/análogos & derivados , Adenosina/genética , Animais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Hepatoblastoma/diagnóstico , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Via de Sinalização Wnt
17.
Small ; 16(2): e1905233, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31814271

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. The prognosis of HCC remains very poor; thus, an effective treatment remains urgent. Herein, a type of nanomedicine is developed by conjugating Fe@Fe3 O4 nanoparticles with ginsenoside Rg3 (NpRg3), which achieves an excellent coupling effect. In the dimethylnitrosamine-induced HCC model, NpRg3 application significantly prolongs the survival of HCC mice. Further research indicates that NpRg3 application significantly inhibits HCC development and eliminates HCC metastasis to the lung. Notably, NpRg3 application delays HCC-induced ileocecal morphology and gut microbial alterations more than 12 weeks during HCC progression. NpRg3 administration elevates the abundance of Bacteroidetes and Verrucomicrobia, but decreases Firmicutes. Twenty-nine predicted microbial gene functions are enriched, while seven gene functions are reduced after NpRg3 administration. Moreover, the metabolomics profile presents a significant progression during HCC development, but NpRg3 administration corrects tumor-dominant metabolomics. NpRg3 administration decreases 3-indolepropionic acid and urea, but elevates free fatty acids. Importantly, NpRg3 application remodels the unbalanced correlation networks between gut microbiota and metabolism during HCC therapy. In conclusion, nanoparticle conjugation of ginsenoside Rg3 inhibits HCC development and metastasis via the remodeling of unbalanced gut microbiota and metabolism in vivo, providing an antitumor therapy strategy.


Assuntos
Carcinoma Hepatocelular/patologia , Ginsenosídeos/farmacologia , Neoplasias Hepáticas/patologia , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Ginsenosídeos/química , Humanos , Camundongos , Metástase Neoplásica
18.
Cancer Med ; 9(3): 1254-1262, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31860170

RESUMO

OBJECTIVE: To recognize risk factors and build up and validate a simple risk model predicting 8-year cancer events after nonalcoholic fatty liver disease (NAFLD). METHODS: This was a retrospective cohort study. Patients with NAFLD (n = 5561) were randomly divided into groups: training (n = 1254), test (n = 627), evaluation (n = 627), and validation (n = 3053). Risk factors were recognized by statistical method named as a Cox model with Markov chain Monte Carlo (MCMC) simulation. This prediction score was established based on the training group and was further validated based on the testing and evaluation group from January 1, 2007 to December 31, 2009 and another 3053 independent cases from January 1, 2010 to February 13, 2014. RESULTS: The main outcomes were NAFLD-related cancer events, including those of the liver, breast, esophagus, stomach, pancreas, prostate and colon, within 8 years after hospitalization for NAFLD diagnosis. Seven risk factors (age (every 5 years),LDL, smoking, BMI, diabetes, OSAS, and aspartate aminotransferase (every 5 units)) were identified as independent indicators of cancer events. This risk model contained a predictive range of 0.4%-37.7%, 0.3%-39.6%, and 0.4%-39.3% in the training, test, evaluation group, respectively, with a range 0.4%-30.4% for validation groups. In the training group, 12.6%, 76.9%, and 10.5% of patients, which corresponded to the low -, moderate -, and high-risk groups, had probabilities of, <0.01, <0.1, and 0.23 for 8-year events. CONCLUSIONS: Seven risk factors were recognized and a simple risk model were developed and validated to predict the risk of cancer events after NAFLD based on 8 years. This simple risk score system may recognize high-risk patients and reduce cancer incidence.


Assuntos
Neoplasias/epidemiologia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Idoso , Feminino , Seguimentos , Humanos , Incidência , Fígado/diagnóstico por imagem , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Método de Monte Carlo , Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco , Ultrassonografia
19.
Adv Mater ; 32(6): e1906024, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31834662

RESUMO

The clinical application of chemotherapy is impeded by the unsatisfactory efficacy and severe side effects. Chemodynamic therapy (CDT) has emerged as an efficient strategy for cancer treatment utilizing Fenton chemistry to destroy cancer cells by converting endogenous H2 O2 into highly toxic reactive oxygen species. Apart from the chemotherapeutic effect, cisplatin is able to act as an artificial enzyme to produce H2 O2 for CDT through cascade reactions, thus remarkably improving the anti-tumor outcomes. Herein, an organic theranostic nanomedicine (PTCG NPs) is constructed with high loading capability using epigallocatechin-3-gallate (EGCG), phenolic platinum(IV) prodrug (Pt-OH), and polyphenol modified block copolymer (PEG-b-PPOH) as the building blocks. The high stability of PTCG NPs during circulation stems from their strong metal-polyphenol coordination interactions, and efficient drug release is realized after cellular internalization. The activated cisplatin elevates the intracellular H2 O2 level through cascade reactions. This is further utilized to produce highly toxic reactive oxygen species catalyzed by an iron-based Fenton reaction. In vitro and in vivo investigations demonstrate that the combination of chemotherapy and chemodynamic therapy achieves excellent anticancer efficacy. Meanwhile, systemic toxicity faced by platinum-based drugs is avoided through this nanoformulation. This work provides a promising strategy to develop advanced nanomedicine for cascade cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Catequina/análogos & derivados , Cisplatino/uso terapêutico , Neoplasias/tratamento farmacológico , Polifenóis/uso terapêutico , Pró-Fármacos/uso terapêutico , Animais , Antineoplásicos/química , Catequina/química , Catequina/uso terapêutico , Cisplatino/química , Células Hep G2 , Humanos , Camundongos , Nanomedicina , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Neoplasias/metabolismo , Polifenóis/química , Pró-Fármacos/química , Espécies Reativas de Oxigênio/metabolismo
20.
J Cancer ; 10(22): 5447-5459, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632489

RESUMO

Purpose: The ectopic expression of N6-methyladenosine (m6A) associated genes is a common feature of multiple tumors. However, little is known about the expression status and the prognostic value of these genes in human breast cancer (BRC). Herein, we conducted a comprehensive analysis to identify the expression profiling and clinical significance of m6A-related genomic targets in BRC. Materials and Methods: The expression data including 1109 BRC tissues and 113 normal breast tissues were obtained from The Cancer Genome Atlas (TCGA) database to evaluate the mRNA expression levels of m6A-related genomic targets. In addition, 6 independent BRCA cohorts retrieved from the Gene Expression Omnibus (GEO) database were enrolled to further ascertain the expression profiling of m6A-related genomic targets. Meanwhile, the immunohistochemical (IHC) staining data from BRC tissue microarray (TMA) cohort and the Human Protein Atlas (HPA) database were used to evaluate the proteomic expression of m6A-related genomic targets. Immunofluorescence (IF) analysis was performed to validate the subcellular location of m6A-related genomic targets. Moreover, the prognostic value of m6A-related genomic targets in BRC was analyzed by Kaplan-Meier analysis and Cox regression models. Results: m6A-related genomic targets were differentially expressed in BRC tissues. TMA IHC staining showed that most of the m6A-related genomic targets were significantly altered at the protein level (either upregulated or downregulated), consistent with their changes in the genomic profile. IF analysis showed the subcellular location of m6A-related genomic targets in BRC cell lines. Furthermore, we demonstrated that overexpression of YTHDF1 (P=0.049), YTHDF3 (P<0.001) and KIAA1429 (P=0.032) predicted poor prognosis in terms of overall survival (OS). Upregulation of YTHDF3 was an independent prognostic factor for OS in patients with BRC (P=0.036). Conclusion: m6A-related genomic targets are significantly altered in BRC and predict poor prognosis. These m6A-related genomic targets could serve as novel prognostic biomarkers for BRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA