Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int Immunopharmacol ; 126: 111297, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039718

RESUMO

OBJECTIVE AND DESIGN: We aimed to investigate the molecular mechanism underlying formaldehyde (FA)-induced congenital heart disease (CHD) using in vitro and in vivo models. MATERIALS AND SUBJECTS: Neonatal rat heart tissues and H9C2 cells were used for in vitro studies, while FA-exposed new-born rats were used for in vivo studies. TREATMENT: H9C2 cells were exposed to FA concentrations of 0, 50, 100 and 150 µM/mL for 24 h. METHODS: Whole transcriptome gene sequencing identified differentially expressed miRNAs in neonatal rat heart tissues, while Real-time quantitative PCR (RT-qPCR) assessed miR-871-3p and Megf8 expression. RNA pull-down and dual-luciferase reporter assays determined miR-871-3p and Megf8 relationships. Inflammatory cytokine expression was assessed by western blotting. A FA-induced CHD model was used to validate miR-871-3p regulatory effects in vivo. RESULTS: We identified 89 differentially expressed miRNAs, with 28 up-regulated and 61 down-regulated (fold change ≥ 2.0, P < 0.05). Inflammation (interleukin) and signalling pathways were found to control FA-induced cardiac dysplasia. miR-871-3p was upregulated in FA-exposed heart tissues, modulated inflammation, and directly targeted Megf8. In vivo experiments showed miR-871-3p knockdown inhibited FA-induced inflammation and CHD. CONCLUSION: We demonstrated miR-871-3p's role in FA-induced CHD by targeting Megf8, providing potential targets for CHD intervention and improved diagnosis and treatment strategies.


Assuntos
Formaldeído , Cardiopatias , Proteínas de Membrana , MicroRNAs , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Ratos , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/toxicidade , Modelos Animais de Doenças , Formaldeído/metabolismo , Formaldeído/toxicidade , Expressão Gênica , Técnicas de Silenciamento de Genes , Coração/efeitos dos fármacos , Coração/fisiopatologia , Cardiopatias/congênito , Cardiopatias/metabolismo , Cardiopatias/patologia , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley
2.
Eur J Med Res ; 28(1): 368, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737183

RESUMO

AIM: Autophagy plays essential roles in abdominal aortic aneurysm (AAA) development and progression. The objective of this study was to verify the autophagy-related genes (ARGs) underlying AAA empirically and using bioinformatics analysis. METHODS: Two gene expression profile datasets GSE98278 and GSE57691 were downloaded from the Gene Expression Omnibus (GEO) database, and principal component analysis was performed. Following, the R software (version 4.0.0) was employed to analyze potentially differentially expressed genes related with AAA and autophagy. Subsequently, the candidate genes were screened using protein-protein interaction (PPI), gene ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Finally, quantitative real-time polymerase chain reaction (RT-qPCR) was performed to detect the RNA expression levels of the top five selected abnormal ARGs in clinical samples obtained from the normal and AAA patients. RESULTS: According to the information contained (97 AAA patients and 10 healthy controls) in the two datasets, a total of 44 differentially expressed autophagy-related genes (6 up-regulated genes and 38 down-regulated genes) were screened. GO enrichment analysis of differentially expressed autophagy-related genes (DEARGs) demonstrated that some enrichment items were associated with inflammation, and PPI analysis indicated interaction between these genes. RT-qPCR results presented that the expression levels of IL6, PPARG, SOD1, and MAP1LC3B were in accordance with the bioinformatics prediction results acquired from the mRNA chip. CONCLUSION: Bioinformatics analysis identified 44 potential autophagy-related differentially expressed genes in AAA. Further verification by RT- qPCR presented that IL6, PPARG, SOD1, and MAP1LC3B may affect the development of AAA by regulating autophagy. These findings might help explain the pathogenesis of AAA and be helpful in its diagnosis and treatment.


Assuntos
Aneurisma da Aorta Abdominal , Interleucina-6 , Humanos , PPAR gama , Superóxido Dismutase-1 , Autofagia/genética , Aneurisma da Aorta Abdominal/genética
3.
Life Sci ; 330: 122006, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544376

RESUMO

Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.


Assuntos
Aterosclerose , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética
4.
Gut Microbes ; 15(2): 2245562, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37635357

RESUMO

Microbial signatures show remarkable potentials in predicting colorectal cancer (CRC). This study aimed to evaluate the diagnostic powers of multimodal microbial signatures, multi-kingdom species, genes, and single-nucleotide variants (SNVs) for detecting precancerous adenomas. We performed cross-cohort analyses on whole metagenome sequencing data of 750 samples via xMarkerFinder to identify adenoma-associated microbial multimodal signatures. Our data revealed that fungal species outperformed species from other kingdoms with an area under the ROC curve (AUC) of 0.71 in distinguishing adenomas from controls. The microbial SNVs, including dark SNVs with synonymous mutations, displayed the strongest diagnostic capability with an AUC value of 0.89, sensitivity of 0.79, specificity of 0.85, and Matthews correlation coefficient (MCC) of 0.74. SNV biomarkers also exhibited outstanding performances in three independent validation cohorts (AUCs = 0.83, 0.82, 0.76; sensitivity = 1.0, 0.72, 0.93; specificity = 0.67, 0.81, 0.67, MCCs = 0.69, 0.83, 0.72) with high disease specificity for adenoma. In further support of the above results, functional analyses revealed more frequent inter-kingdom associations between bacteria and fungi, and abnormalities in quorum sensing, purine and butanoate metabolism in adenoma, which were validated in a newly recruited cohort via qRT-PCR. Therefore, these data extend our understanding of adenoma-associated multimodal alterations in the gut microbiome and provide a rationale of microbial SNVs for the early detection of CRC.


Assuntos
Adenoma , Neoplasias Colorretais , Detecção Precoce de Câncer , Microbioma Gastrointestinal , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/microbiologia , Detecção Precoce de Câncer/métodos , Metagenômica , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/microbiologia , Adenoma/diagnóstico , Adenoma/microbiologia , Metagenoma , Microbioma Gastrointestinal/genética , Marcadores Genéticos , Fezes/microbiologia , Humanos , Fungos/genética , Fungos/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Archaea/genética , Archaea/isolamento & purificação , Vírus/genética , Vírus/isolamento & purificação , Estudos de Coortes
5.
Gut Microbes ; 15(1): 2221428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278203

RESUMO

Dysbiosis of gut microbial community is associated with the pathogenesis of CD and may serve as a promising noninvasive diagnostic tool. We aimed to compare the performances of the microbial markers of different biological levels by conducting a multidimensional analysis on the microbial metagenomes of CD. We collected fecal metagenomic datasets generated from eight cohorts that altogether include 870 CD patients and 548 healthy controls. Microbial alterations in CD patients were assessed at multidimensional levels including species, gene, and SNV level, and then diagnostic models were constructed using artificial intelligence algorithm. A total of 227 species, 1047 microbial genes, and 21,877 microbial SNVs were identified that differed between CD and controls. The species, gene, and SNV models achieved an average AUC of 0.97, 0.95, and 0.77, respectively. Notably, the gene model exhibited superior diagnostic capability, achieving an average AUC of 0.89 and 0.91 for internal and external validations, respectively. Moreover, the gene model was specific for CD against other microbiome-related diseases. Furthermore, we found that phosphotransferase system (PTS) contributed substantially to the diagnostic capability of the gene model. The outstanding performance of PTS was mainly explained by genes celB and manY, which demonstrated high predictabilities for CD with metagenomic datasets and was validated in an independent cohort by qRT-PCR analysis. Our global metagenomic analysis unravels the multidimensional alterations of the microbial communities in CD and identifies microbial genes as robust diagnostic biomarkers across geographically and culturally distinct cohorts.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Metagenoma , Inteligência Artificial , Microbioma Gastrointestinal/genética , Fezes , Genes Microbianos , Disbiose/diagnóstico , Disbiose/genética
6.
Nat Genet ; 55(5): 796-806, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156999

RESUMO

Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract with the following two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). To date, most IBD genetic associations were derived from individuals of European (EUR) ancestries. Here we report the largest IBD study of individuals of East Asian (EAS) ancestries, including 14,393 cases and 15,456 controls. We found 80 IBD loci in EAS alone and 320 when meta-analyzed with ~370,000 EUR individuals (~30,000 cases), among which 81 are new. EAS-enriched coding variants implicate many new IBD genes, including ADAP1 and GIT2. Although IBD genetic effects are generally consistent across ancestries, genetics underlying CD appears more ancestry dependent than UC, driven by allele frequency (NOD2) and effect (TNFSF15). We extended the IBD polygenic risk score (PRS) by incorporating both ancestries, greatly improving its accuracy and highlighting the importance of diversity for the equitable deployment of PRS.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/genética , Doença de Crohn/genética , População do Leste Asiático , População Europeia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Polimorfismo de Nucleotídeo Único/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
7.
Cell Rep Med ; 4(6): 101050, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37172588

RESUMO

Dysregulated host-microbial interactions play critical roles in initiation and perpetuation of gut inflammation in Crohn's disease (CD). However, the spatial distribution and interaction network across the intestine and its accessory tissues are still elusive. Here, we profile the host proteins and tissue microbes in 540 samples from the intestinal mucosa, submucosa-muscularis-serosa, mesenteric adipose tissues, mesentery, and mesenteric lymph nodes of 30 CD patients and spatially decipher the host-microbial interactions. We observe aberrant antimicrobial immunity and metabolic processes across multi-tissues during CD and determine bacterial transmission along with altered microbial communities and ecological patterns. Moreover, we identify several candidate interaction pairs between host proteins and microbes associated with perpetuation of gut inflammation and bacterial transmigration across multi-tissues in CD. Signature alterations in host proteins (e.g., SAA2 and GOLM1) and microbes (e.g., Alistipes and Streptococcus) are further imprinted in serum and fecal samples as potential diagnostic biomarkers, thus providing a rationale for precision diagnosis.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Humanos , Doença de Crohn/complicações , Doença de Crohn/diagnóstico , Doença de Crohn/patologia , Interações entre Hospedeiro e Microrganismos , Multiômica , Inflamação/complicações , Bactérias/genética , Bactérias/metabolismo , Proteínas de Membrana/metabolismo
8.
Gut ; 72(5): 882-895, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015751

RESUMO

OBJECTIVE: Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) is highly expressed in inflamed mucosa of inflammatory bowel disease (IBD) and negatively regulates immune response, while the underlying mechanisms regulating mucosal macrophage functions remain unknown. Here, we investigated the roles of MCPIP1 in modulating the differentiation and functions of intestinal macrophages in the pathogenesis of IBD. DESIGN: ScRNA-seq was used to cluster the monocyte/macrophage lineage from macrophage-specific Mcpip1-deficient (Mcpip1 ∆Mye) mice and Mcpip1 fl/fl littermates. The differentially expressed genes were confirmed by RNA-seq, luciferase assay, CUT&Tag assay and Western blotting. Effects of MCPIP1 and the activating transcription factor 3 (ATF3)-AP1S2 axis were assessed in patients with IBD. RESULTS: Mcpip1 ∆Mye mice developed more severe dextran sulfate sodium (DSS)-induced colitis characterised by an increase in macrophage migratory capacity and M1 macrophage polarisation but a decrease in the monocyte-to-macrophage maturation in gut mucosa compared with their littermates. ScRNA-seq unravelled a proinflammatory population (Ccr2+Il-1ß+Tlr2+Cx3cr1-Cd163-Mrc1-Ly6c+) of the monocyte/macrophage lineage from lamina propria CD11b+ cells and an arrest of Mcpip1 ∆Mye monocyte-to-macrophage maturation in an Atf3-Ap1s2 axis-dependent manner. Silencing of Ap1s2 or Atf3 markedly suppressed Mcpip1 ∆Mye macrophage migration, M1-like polarisation, and production of proinflammatory cytokines and chemokines. Notably, in vivo blockage of Ap1s2 ameliorated DSS-induced colitis in Mcpip1 ΔMye mice through enhancing intestinal macrophage maturation. Furthermore, MCPIP1, ATF3 and AP1S2 were highly expressed in inflamed mucosa of active patients with IBD and blockage of ATF3 or AP1S2 significantly suppressed IBD CD14+-derived M1-like macrophage polarisation and proinflammatory cytokine production. CONCLUSIONS: Macrophage-specific Mcpip1 deficiency polarises macrophages towards M1-like phenotype, arrests macrophage maturation and exacerbates intestinal inflammation in an Atf3-Ap1s2-dependent manner, thus providing novel mechanistic insight into intestinal macrophage functions during IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ribonucleases , Animais , Camundongos , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Quimiocina CCL2/metabolismo , Colite/patologia , Sulfato de Dextrana/farmacologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL , Monócitos , Ribonucleases/metabolismo
9.
Food Chem Toxicol ; 174: 113653, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758786

RESUMO

Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.


Assuntos
MicroRNAs , RNA Longo não Codificante , Gravidez , Feminino , Ratos , Animais , RNA Longo não Codificante/genética , Proteínas Hedgehog/genética , MicroRNAs/genética , RNA Mensageiro/genética , Coração , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
10.
Mucosal Immunol ; 15(5): 819-828, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35732818

RESUMO

G protein-coupled receptors (GPCRs) are a group of membrane proteins that mediate most of the physiological responses to various signaling molecules such as hormones, neurotransmitters, and environmental stimulants. Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the gastrointestinal tract and presents a spectrum of heterogeneous disorders falling under two main clinical subtypes including Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis of IBD is multifactorial and is related to a genetically dysregulated mucosal immune response to environmental drivers, mainly microbiotas. Although many drugs, such as 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, have been approved for IBD treatment, none can cure IBD permanently. Emerging evidence indicates significant associations between GPCRs and the pathogenesis of IBD. Here, we provide an overview of the essential physiological functions and signaling pathways of GPCRs and their roles in mucosal immunity and IBD regulation.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Homeostase , Humanos , Receptores Acoplados a Proteínas G
11.
Redox Biol ; 46: 102089, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364220

RESUMO

As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Acetilação , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Humanos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
12.
Therap Adv Gastroenterol ; 14: 17562848211018098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104213

RESUMO

Bile acids are a class of cholesterol derivatives that have been known for a long time for their critical roles in facilitating the digestion and absorption of lipid from the daily diet. The transformation of primary bile acids produced by the liver to secondary bile acids appears under the action of microbiota in the intestine, greatly expanding the molecular diversity of the intestinal environment. With the discovery of several new receptors of bile acids and signaling pathways, bile acids are considered as a family of important metabolites that play pleiotropic roles in regulating many aspects of human overall health, especially in the maintenance of the microbiota homeostasis and the balance of the mucosal immune system in the intestine. Accordingly, disruption of the process involved in the metabolism or circulation of bile acids is implicated in many disorders that mainly affect the intestine, such as inflammatory bowel disease and colon cancer. In this review, we discuss the different metabolism profiles in diseases associated with the intestinal mucosa and the diverse roles of bile acids in regulating the intestinal immune system. Furthermore, we also summarize recent advances in the field of new drugs that target bile acid signaling and highlight the importance of bile acids as a new target for disease intervention.

13.
J Cell Mol Med ; 25(12): 5358-5371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973354

RESUMO

As a common air pollutant, formaldehyde is widely present in nature, industrial production and consumer products. Endogenous formaldehyde is mainly produced through the oxidative deamination of methylamine catalysed by semicarbazide-sensitive amine oxidase (SSAO) and is ubiquitous in human body fluids, tissues and cells. Vascular endothelial cells and smooth muscle cells are rich in this formaldehyde-producing enzyme and are easily damaged owing to consequent cytotoxicity. Consistent with this, increasing evidence suggests that the cardiovascular system and stages of heart development are also susceptible to the harmful effects of formaldehyde. Exposure to formaldehyde from different sources can induce heart disease such as arrhythmia, myocardial infarction (MI), heart failure (HF) and atherosclerosis (AS). In particular, long-term exposure to high concentrations of formaldehyde in pregnant women is more likely to affect embryonic development and cause heart malformations than long-term exposure to low concentrations of formaldehyde. Specifically, the ability of mouse embryos to effect formaldehyde clearance is far lower than that of the rat embryos, more readily allowing its accumulation. Formaldehyde may also exert toxic effects on heart development by inducing oxidative stress and cardiomyocyte apoptosis. This review focuses on the current progress in understanding the influence and underlying mechanisms of formaldehyde on cardiovascular disease and heart development.


Assuntos
Doenças Cardiovasculares/patologia , Desinfetantes/efeitos adversos , Formaldeído/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo
14.
Int J Biol Sci ; 17(5): 1328-1338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867849

RESUMO

Doxorubicin (DOX) is a kind of representative anthracyclines. It has greatly prolonged lifespan of cancer patients. However, a long course of DOX chemotherapy could induce various forms of deaths of cardiomyocytes, such as apoptosis, pyroptosis and ferroptosis, contributing to varieties of cardiac complications called cardiotoxicity. It has become a major concern considering the large number of cancer patients' worldwide and increased survival rates after chemotherapy. Exosomes, a subgroup of extracellular vesicles (EVs), are secreted by nearly all cells and consist of lipid bilayers, nucleic acids and proteins. They can serve as mediators between intercellular communication via the transfer of bioactive molecules from secretory to recipient cells, modulating multiple pathophysiological processes. It has been proven that exosomes in body fluids can serve as biomarkers for doxorubicin-induced cardiotoxicity (DIC). Moreover, exosomes have attracted considerable attention because of their capacity as carriers of certain proteins, genetic materials (miRNA and lncRNA), and chemotherapeutic drugs to decrease the dosage of DOX and alleviate cardiotoxicity. This review briefly describes the characteristics of exosomes and highlights their clinical application potential as diagnostic biomarkers and drug delivery vehicles for DIC, thus providing a strategy for addressing it based on exosomes.


Assuntos
Cardiotoxicidade , Doxorrubicina , Portadores de Fármacos/metabolismo , Exossomos/metabolismo , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Comunicação Celular , Doxorrubicina/farmacologia , Doxorrubicina/toxicidade , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA