RESUMO
Binge eating is a characteristic symptom observed in obese individuals that is related to dysfunction of dopaminergic neurons (DNs). Intermittent administration of a high-fat diet (HFD) is reported to induce binge-like eating, but the underlying mechanisms remain unclear. We generated dopaminergic neuron specific IKKß deficient mice (KO) to examine the effects of inflammation in DNs on binge-like eating under inflammatory conditions associated with HFD. After administration of HFD for 4 weeks, mice were fasted for 24 h, and then the consumption of HFD was measured for 2 h. We also evaluated that the mRNA expressions of inflammatory cytokines, glial markers, and dopamine signaling-related genes in the ventral tegmental area (VTA) and striatum. Moreover, insulin was administered intraventricularly to assess downstream signaling. The consumption of HFD was significantly reduced, and the phosphorylation of AKT in the VTA was significantly increased in female KO compared to wild-type (WT) mice. Analyses of mRNA expressions revealed that DNs activity and inflammation in the VTA were significantly decreased in female KO mice. Thus, our data suggest that HFD-induced inflammation with glial cell activation in the VTA affects DNs function and causes abnormal eating behaviors accompanied by insulin resistance in the VTA of female mice.
Assuntos
Transtorno da Compulsão Alimentar , Insulinas , Animais , Transtorno da Compulsão Alimentar/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Área Tegmentar Ventral/metabolismoRESUMO
The reward system plays an important role in the pathogenesis of not only drug addiction, but also diet-induced obesity. Recent studies have shown that insulin and leptin receptor signaling in the ventral tegmental area (VTA) regulate energy homeostasis and that their dysregulation is responsible for obesity and altered food preferences. Although a high-fat diet (HFD) induces inflammation that leads to insulin and leptin resistance in the brain, it remains unclear whether HFD induces inflammation in the VTA. In the present study, we placed male mice on a chow diet or HFD for 3, 7, and 28â¯days and evaluated the mRNA expression of inflammatory cytokines and microglial activation markers in the VTA. The HFD group showed significantly elevated mRNA expressions of IL1ß at 3â¯days; tumor necrosis factor-alpha (TNFα), IL1ß, IL6, Iba1, and CD11b at 7â¯days; and TNFα, IL1ß, Iba1, and CD11b at 28â¯days. The changes in TNFα were also confirmed in immunohistochemical analysis. Next, after administration of chow or HFD for 7â¯days, we selected mice with equal weights in both groups. In experiments using these mice, Akt phosphorylation in the VTA was significantly decreased after intracerebroventricular injection of insulin, whereas no change in STAT3 phosphorylation was found with leptin. Taken together, these results suggest that HFD induces inflammation at least partly associated with microglial activation in the VTA leading to insulin resistance, independently of the energy balance. Our data provide new insight into the pathophysiology of obesity caused by a dysfunctional reward system under HFD conditions.
Assuntos
Resistência à Insulina , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Área Tegmentar VentralRESUMO
In the study, a novel kind of peptides-zinc (AKP-Zn) chelate was obtained using the Antarctic krill (Euphausia superba) peptides (AKP) as raw material, the reaction was carried out with the mass ratio of the AKP to ZnSO4·7H2O of 1:2 at pH 6.0 and 60 °C for 10 min. The structure and composition of the AKP, including particle size, Zeta potential, molecular weight distribution, amino acid composition, microstructure and surface elemental composition, changed significantly after chelating with zinc. The result of Fourier transform infrared spectroscopy indicated that zinc could be chelated by carboxyl oxygen and amino nitrogen atoms of the AKP. Furthermore, compared with zinc sulfate and zinc gluconate, the AKP-Zn chelate was more stable at various pH conditions and the simulated gastrointestinal digestion experiment. These findings would provide a scientific basis for developing new zinc supplements and the high-value utilization of Antarctic krill protein resource.