Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(37): 25877-25887, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664215

RESUMO

How to efficiently treat municipal solid waste (MSW) has become one of the critical solutions in response to the call for "carbon neutrality". Here, the waste polypropylene nonwoven fabric of waste diapers was converted into hierarchical nanoporous biochar (HPBC) through pre-carbonization and activation processes as an ideal precursor for supercapacitors (SCs) with excellent performance. The prepared HPBC-750-4 with an ultrahigh specific surface area (3838.04 m2 g-1) and abundant heteroatomic oxygen (13.25%) and nitrogen (1.16%) codoped porous biochar structure. Given its structural advantages, HPBC-750-4 achieved a specific capacitance of 340.9 F g-1 at a current density of 1 A g-1 in a three-electrode system. Its capacitance retention rate was above 99.2% after 10 000 cycles at a current density of 10 A g-1, which indicated an excellent rate capability and long-term cycling stability. Furthermore, the HPBC-750-4//HPBC-750-4 symmetric SC exhibited a superb energy density of 10.02 W h kg-1 with a power density of 96.15 W kg-1 in a 6 M KOH electrolyte. This work not only demonstrates the enormous potential of waste polypropylene nonwoven fabric in the SC industry but also provides an economically feasible means of managing MSW.

2.
J Orthop Surg Res ; 18(1): 391, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248458

RESUMO

BACKGROUND: Osteoporosis is a common systemic bone disease that leads to bone fragility and increases the risk of fracture. However, the pathogenesis of osteoporosis is considered to be highly complex. The exosomes can regulate the communication between cells. The specific mechanism of information transmission between osteoblasts and endothelial cells is worthy of further study. METHODS: Exosomes were isolated and verified from senescent osteoblasts. The source and properties of exosomes were determined by TEM, particle size analysis and western blot. We established the co-culture model of endothelial cells and senescent osteoblasts. We used qRT-PCR to identify differentially expressed miRNAs. The functional changes of vascular endothelial cells were verified by cell transfection. ß-Galactosidase cell senescence assay, Hoechst cell apoptosis assay, Ki67 cell proliferation assay and Transwell migration assay were used to verify cell senescence, apoptosis, proliferation, and migration. The potential target gene of miRNA was detected by bio-informatics pathway and double luciferase report. RESULTS: We discovered that senescent osteoblasts could promote the senescence and apoptosis of vascular endothelial cells and inhibit their proliferation and migration. miR-214-3p was upregulated in senescent osteoblast-derived exosomes. miR-214-3p could effectively promote senescence and apoptosis of endothelial cells and inhibit proliferation and migration ability. L1CAM is a miR-214-3p direct target gene determined by bio-informatics and double luciferase report. CONCLUSIONS: In conclusion, senescent osteoblast-derived exosomes can accelerate endothelial cell senescence through miR-214-3p/L1CAM pathway. Our experiments reveal the role of exosomes in the skeletal microenvironment.


Assuntos
MicroRNAs , Molécula L1 de Adesão de Célula Nervosa , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Osteoblastos/metabolismo , Proliferação de Células/genética
3.
Phys Chem Chem Phys ; 17(6): 4388-97, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25578030

RESUMO

Magnetic iron oxide/graphene oxide (MGO) with high iron loading (51 wt%) has been successfully synthesized using the co-precipitation method, and then used as adsorbents for the removal of arsenate and arsenite from aqueous solutions. The resulting MGO possesses desirable magnetic properties (12.8 emu g(-1)) and excellent adsorption properties for the removal of As(III) and As(IV) with significantly enhanced adsorption capacities of 54.18 mg g(-1) and 26.76 mg g(-1), respectively. These values are much higher than those of other GO-based composites reported previously. The kinetic, equilibrium and environmental effects (pH, ionic strength, coexist anion) of MGO were obtained experimentally. A synchrotron-based X-ray fluorescent microprobe was used to generate elemental distribution maps of adsorbents; the results suggest that As(v) became preferentially associated with iron oxides during the adsorption process, and that the distribution of Fe is directly correlated with the distribution of As.


Assuntos
Arseniatos/isolamento & purificação , Arsenitos/isolamento & purificação , Compostos Férricos/química , Grafite/química , Poluentes Químicos da Água/isolamento & purificação , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA