Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
BMC Cancer ; 24(1): 967, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112947

RESUMO

BACKGROUND: This study aimed to evaluate the effectiveness and safety of recombinant human endostatin (Rh-endostatin) plus programmed cell death 1 (PD-1) inhibitors and chemotherapy as first-line treatment for advanced or metastatic non-small cell lung cancer (NSCLC) in a real-world setting. METHODS: This was a retrospective study on patients with EGFR/ALK-negative, advanced or metastatic NSCLC. Patients received Rh-endostatin plus PD-1 inhibitors and chemotherapy every three weeks for 4 to 6 cycles. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety. RESULTS: A total of 68 patients were included in this retrospective analysis. As of data cutoff (December 13, 2022), the median follow-up of 21.4 months (interquartile range [IQR], 8.3-44.4 months). The median PFS and OS was 22.0 (95% confidence interval [CI]: 16.6-27.4) and 31.0 months (95% CI: 23.4-not evaluable [NE]), respectively. The ORR was 72.06% (95% CI: 59.85-82.27%), and DCR was 95.59% (95% CI: 87.64-99.08%). Patients with stage IIIB/IIIC NSCLC had significantly longer median PFS (23.4 vs. 13.2 months), longer median OS (not reached vs. 18.0 months), and higher ORR (89.2% vs. 51.6%) than those with stage IV NSCLC (all p ≤ 0.001). The ORR was higher in patients with high PD-L1 expression (tumor proportion score [TPS] ≥ 50%) than in those with low PD-L1 expression or positive PD-L1 expression (75% vs. 50%, p = 0.025). All patients experienced treatment-related adverse events (TRAEs), and ≥ grade 3 TRAEs occurred in 16 (23.53%) patients. CONCLUSIONS: Rh-endostatin combined with PD-1 inhibitors plus chemotherapy as first-line treatment yielded favorable effectiveness with a manageable profile in patients with advanced or metastatic NSCLC, representing a promising treatment modality.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Endostatinas/administração & dosagem , Endostatinas/uso terapêutico , Feminino , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Adulto , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Intervalo Livre de Progressão , Resultado do Tratamento
2.
Environ Res ; 259: 119537, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960362

RESUMO

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.

3.
Fish Shellfish Immunol ; 150: 109661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821227

RESUMO

IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (∼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Tubarões , Tubarões/imunologia , Tubarões/genética , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Antígenos/imunologia , Antígenos/genética , Doenças dos Peixes/imunologia
4.
Cancer Res ; 84(14): 2265-2281, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718296

RESUMO

Circadian clock perturbation frequently occurs in cancer and facilitates tumor progression by regulating malignant growth and shaping the immune microenvironment. Emerging evidence has indicated that clock genes are disrupted in melanoma and linked to immune escape. Herein, we found that the expression of retinoic acid receptor-related orphan receptor-α (RORA) is downregulated in melanoma patients and that patients with higher RORA expression have a better prognosis after immunotherapy. Additionally, RORA was significantly positively correlated with T-cell infiltration and recruitment. Overexpression or activation of RORA stimulated cytotoxic T-cell-mediated antitumor responses. RORA bound to the CD274 promoter and formed an inhibitory complex with HDAC3 to suppress PD-L1 expression. In contrast, the DEAD-box helicase family member DDX3X competed with HDAC3 for binding to RORA, and DDX3X overexpression promoted RORA release from the suppressive complex and thereby increased PD-L1 expression to generate an inhibitory immune environment. The combination of a RORA agonist with an anti-CTLA4 antibody synergistically increased T-cell antitumor immunity in vivo. A score based on the combined expression of HDAC3, DDX3X, and RORA correlated with immunotherapy response in melanoma patients. Together, this study elucidates a mechanism of clock component-regulated antitumor immunity, which will help inform the use of immunotherapy and lead to improved outcomes for melanoma patients receiving combined therapeutic treatments. Significance: RORA forms a corepressor complex to inhibit PD-L1 expression and activate antitumor T-cell responses, indicating that RORA is a potential target and predictive biomarker to improve immunotherapy response in melanoma patients.


Assuntos
Antígeno B7-H1 , Relógios Circadianos , Melanoma , Humanos , Melanoma/imunologia , Melanoma/patologia , Melanoma/genética , Melanoma/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Animais , Camundongos , Relógios Circadianos/genética , Relógios Circadianos/imunologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Microambiente Tumoral/imunologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Monitorização Imunológica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Masculino , Feminino , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Imunoterapia/métodos , Prognóstico
5.
J Control Release ; 371: 29-42, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763389

RESUMO

The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.


Assuntos
Colesterol , Colesterol/metabolismo , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanopartículas/administração & dosagem , Camundongos , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Feminino , Matriz Extracelular/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos
6.
Lancet Respir Med ; 12(5): 355-365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309287

RESUMO

BACKGROUND: Penpulimab is a novel programmed death (PD)-1 inhibitor. This study aimed to establish the efficacy and safety of first line penpulimab plus chemotherapy for advanced squamous non-small-cell lung cancer. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 clinical trial enrolled patients with locally advanced or metastatic squamous non-small-cell lung cancer from 74 hospitals in China. Eligible participants were aged 18-75 years, had histologically or cytologically confirmed locally advanced (stage IIIb or IIIc) or metastatic (stage IV) squamous non-small-cell lung cancer, were ineligible to complete surgical resection and concurrent or sequential chemoradiotherapy, had an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, did not have previous systemic chemotherapy for locally advanced or metastatic non-small-cell lung cancer, and had one or more measurable lesions according to RECIST (version 1.1). Participants were randomly assigned (1:1) to receive intravenous penpulimab 200 mg or placebo (excipient of penpulimab injection), plus paclitaxel 175 mg/m2 and carboplatin AUC of 5 intravenously on day 1 every 3 weeks for four cycles, followed by penpulimab or placebo as maintenance therapy. Stratification was done according to the PD-L1 tumour proportion score (<1% vs 1-49% vs ≥50%) and sex (male vs female). The participants, investigators, and other research staff were masked to group assignment. The primary outcome was progression-free survival assessed by the masked Independent Radiology Review Committee in the intention-to-treat population and patients with a PD-L1 tumour proportion score of 1% or more (PD-L1-positive subgroup). The primary analysis was based on the intention-to-treat analysis set (ie, all randomly assigned participants) and the PD-L1-positive subgroup. The safety analysis included all participants who received at least one dose of study drug after enrolment. This trial was registered with ClinicalTrials.gov (NCT03866993). FINDINGS: Between Dec 20, 2018, and Oct 10, 2020, 485 patients were screened, and 350 participants were randomly assigned (175 in the penpulimab group and 175 in the placebo group). Of 350 participants, 324 (93%) were male and 26 (7%) were female, and 347 (99%) were of Han ethnicity. In the final analysis (June 1, 2022; median follow-up, 24·7 months [IQR 0-41·4]), the penpulimab group showed an improved progression-free survival compared with the placebo group, both in the intention-to-treat population (median 7·6 months, 95% CI 6·8--9·6 vs 4·2 months, 95% CI 4·2-4·3; HR 0·43, 95% CI 0·33-0·56; p<0·0001) and in the PD-L1-positive subgroup (8·1 months, 5·7-9·7 vs 4·2 months, 4·1-4·3; HR 0·37, 0·27-0·52, p<0·0001). Grade 3 or worse treatment-emergent adverse events occurred in 120 (69%) 173 patients in the penpulimab group and 119 (68%) of 175 in the placebo group. INTERPRETATION: Penpulimab plus chemotherapy significantly improved progression-free survival in patients with advanced squamous non-small-cell lung cancer compared with chemotherapy alone. The treatment was safe and tolerable. Penpulimab combined with paclitaxel and carboplatin is a new option for first-line treatment in patients with this advanced disease. FUNDING: The National Natural Science Foundation of China, Shanghai Municipal Health Commission, Chia Tai Tianqing Pharmaceutical, Akeso.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Paclitaxel , Humanos , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Método Duplo-Cego , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , China , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Resultado do Tratamento , Intervalo Livre de Progressão
7.
ACS Appl Mater Interfaces ; 16(2): 2166-2179, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170968

RESUMO

Hypoxia is a pervasive feature of solid tumors, which significantly limits the therapeutic effect of photodynamic therapy (PDT) and further influences the immunotherapy efficiency in breast cancer. However, the transient alleviation of tumor hypoxia fails to address the underlying issue of increased oxygen consumption, resulting from the rapid proliferation of tumor cells. At present, studies have found that the reduction of the oxygen consumption rate (OCR) by cytochrome C oxidase (COX) inhibition that induced oxidative phosphorylation (OXHPOS) suppression was able to solve the proposed problem. Herein, we developed a specific mitochondrial-targeting nanotrapper (I@MSN-Im-PEG), which exhibited good copper chelating ability to inhibit COX for reducing the OCR. The results proved that the nanotrapper significantly alleviated the hypoxic tumor microenvironment by copper chelation in mitochondria and enhanced the PDT effect in vitro and in vivo. Meanwhile, the nanotrapper improved photoimmunotherapy through both enhancing PDT-induced immunogenetic cell death (ICD) effects and reversing Treg-mediated immune suppression on 4T1 tumor-bearing mice. The mitochondrial-targeting nanotrapper provided a novel and efficacious strategy to enhance the PDT effect and amplify photoimmunotherapy in breast cancer.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fotoquimioterapia/métodos , Cobre/farmacologia , Hipóxia Tumoral , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico , Imunoterapia , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/metabolismo , Microambiente Tumoral
8.
Small ; 20(23): e2309206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149505

RESUMO

Ferroptosis is an emerging non-apoptotic death process, mainly involving lipid peroxidation (LPO) caused by iron accumulation, which is potentially lethal to the intrinsically apoptotic-resistant malignant tumor. However, it is still restricted by the inherent antioxidant systems of tumor cells and the poor efficacy of traditional iron-based ferroptosis initiators. Herein, the study develops a novel ferroptosis-inducing agent based on PEGylated Cu+/Cu2+-doped black phosphorus@polypyrrole heterojunction (BP@CPP), which is constructed by utilizing the phosphate on the surface of BP to chelate Cu ions and initiating subsequent in situ polymerization of pyrrole. As a novel Z-scheme heterojunction, BP@CPP possesses an excellent photocatalytic activity in which the separated electron-hole pairs under laser irradiation endow it with powerful oxidizing and reducing capacities, which synergy with Cu+/Cu2+ self-cycling catalyzing Fenton-like reaction to further strengthen reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, ultimately leading to efficient ferroptosis. Systematic in vitro and in vivo evaluations demonstrate that BP@CPP effectively inhibit tumor growth by inducing desired ferroptosis while maintaining a favorable biosafety in the body. Therefore, the developed BP@CPP-based ferroptosis initiator provides a promising strategy for ferroptosis-like cancer therapy.


Assuntos
Cobre , Ferroptose , Oxirredução , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Animais , Linhagem Celular Tumoral , Polímeros/química , Polímeros/farmacologia , Pirróis/química , Pirróis/farmacologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos , Glutationa/metabolismo , Fósforo/química
9.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834019

RESUMO

Janus tyrosine kinase (JAK) variants are known drivers for hematological disorders. With the full-length structure of mouse JAK1 being recently resolved, new observations on the localization of variants within closed, open, and dimerized JAK structures are possible. Full-length homology models of human wild-type JAK family members were developed using the Glassman et al. reported mouse JAK1 containing the V658F structure as a template. Many mutational sites related to proliferative hematological disorders reside in the JH2 pseudokinase domains facing the region important in dimerization of JAKs in both closed and open states. More than half of all JAK gain of function (GoF) variants are changes in polarity, while only 1.2% are associated with a change in charge. Within a JAK1-JAK3 homodimer model, IFNLR1 (PDB ID7T6F) and the IL-2 common gamma chain subunit (IL2Rγc) were aligned with the respective dimer implementing SWISS-MODEL coupled with ChimeraX. JAK3 variants were observed to encircle the catalytic site of the kinase domain, while mutations in the pseudokinase domain align along the JAK-JAK dimerization axis. FERM domains of JAK1 and JAK3 are identified as a hot spot for hematologic malignancies. Herein, we propose new allosteric surfaces for targeting hyperactive JAK dimers.


Assuntos
Neoplasias Hematológicas , Janus Quinases , Animais , Humanos , Camundongos , Janus Quinases/genética , Tirosina/genética , Janus Quinase 1/genética , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Mutação , Desenvolvimento de Medicamentos , Janus Quinase 2/genética , Receptores de Interferon/genética
10.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569303

RESUMO

Janus tyrosine kinase 3 (JAK3) is primarily expressed in immune cells and is needed for signaling by the common gamma chain (γc) family of cytokines. Abnormal JAK3 signal transduction can manifest as hematological disorders, e.g., leukemia, severe combined immunodeficiency (SCID) and autoimmune disease states. While regulatory JAK3 phosphosites have been well studied, here a functional proteomics approach coupling a JAK3 autokinase assay to mass spectrometry revealed ten previously unreported autophosphorylation sites (Y105, Y190, Y238, Y399, Y633, Y637, Y738, Y762, Y824, and Y841). Of interest, Y841 was determined to be evolutionarily conserved across multiple species and JAK family members, suggesting a broader role for this residue. Phospho-substitution mutants confirmed that Y841 is also required for STAT5 tyrosine phosphorylation. The homologous JAK1 residue Y894 elicited a similar response to mutagenesis, indicating the shared importance for this site in JAK family members. Phospho-specific Y841-JAK3 antibodies recognized activated kinase from various T-cell lines and transforming JAK3 mutants. Computational biophysics analysis linked Y841 phosphorylation to enhanced JAK3 JH1 domain stability across pH environments, as well as to facilitated complementary electrostatic JH1 dimer formation. Interestingly, Y841 is not limited to tyrosine kinases, suggesting it represents a conserved ubiquitous enzymatic function that may hold therapeutic potential across multiple kinase families.


Assuntos
Fator de Transcrição STAT5 , Transdução de Sinais , Fosforilação , Fator de Transcrição STAT5/genética , Janus Quinase 1/genética , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo
11.
Acta Biomater ; 167: 463-472, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302733

RESUMO

Nitric oxide (NO) is a crucial gaseous medium for tumor growth and progression, but it may also cause mitochondrial disorder and DNA damage by drastically increasing its concentration in tumor. Due to its challenging administration and unpredictable release, NO based gas therapy is difficult to eliminate malignant tumor at low safe doses. To address these issues, herein, we develop a multifunctional nanocatalyst called Cu-doped polypyrrole (CuP) as an intelligent nanoplatform (CuP-B@P) to deliver the NO precursor BNN6 and specifically release NO in tumors. Under the aberrant metabolic environment of tumors, CuP-B@P catalyzes the conversion of antioxidant GSH into GSSG and excess H2O2 into ·OH through Cu+/Cu2+ cycle, which results in oxidative damage to tumor cells and the concomitant release of cargo BNN6. More importantly, after laser exposure, nanocatalyst CuP can absorb and convert photons into hyperthermia, which in turn, accelerates the aforesaid catalytic efficiency and pyrolyzes BNN6 into NO. Under the synergistic effect of hyperthermia, oxidative damage, and NO burst, almost complete tumor elimination is achieved in vivo with negligible toxicity to body. Such an ingenious combination of NO prodrug and nanocatalytic medicine provides a new insight into the development of NO based therapeutic strategies. STATEMENT OF SIGNIFICANCE: A hyperthermia-responsive NO delivery nanoplatform (CuP-B@P) based on Cu-doped polypyrrole was designed and fabricated, in which CuP catalyzed the conversion of H2O2 and GSH into ·OH and GSSG to induce intratumoral oxidative damage. After laser irradiation, hyperthermia ablation and responsive release of NO further coupled with oxidative damage to eliminate malignant tumors. This versatile nanoplatform provides new insights into the combined application of catalytic medicine and gas therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Polímeros , Pirróis , Óxido Nítrico , Fototerapia , Hipertermia Induzida/métodos , Peróxido de Hidrogênio , Dissulfeto de Glutationa , Catálise , Linhagem Celular Tumoral
12.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047778

RESUMO

Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.


Assuntos
Interleucina-2 , Leucemia , Humanos , Fosforilação , Interleucina-2/genética , Interleucina-2/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Janus Quinase 3/genética , Janus Quinase 3/metabolismo
13.
Biomaterials ; 296: 122068, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868032

RESUMO

Photodynamic therapy (PDT)-mediated antitumor immune response depends on oxidative stress intensity and subsequent immunogenic cell death (ICD) in tumor cells, yet the inherent antioxidant system restricts reactive oxygen species (ROS)-associated oxidative damage, which is highly correlated with the upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and the downstream products, such as glutathione (GSH). Herein, to overcome this dilemma, we designed a versatile nanoadjuvant (RI@Z-P) to enhance the sensitivity of tumor cells to oxidative stress via Nrf2-specific small interfering RNA (siNrf2). The constructed RI@Z-P could significantly amplify photooxidative stress and achieve robust DNA oxidative damage, activating the stimulator of interferon genes (STING)-dependent immune-sensing to produce interferon-ß (IFN-ß). Additionally, RI@Z-P together with laser irradiation reinforced tumor immunogenicity by exposing or releasing damage-associated molecular patterns (DAMPs), showing the prominent adjuvant effect for promoting dendritic cell (DC) maturation and T-lymphocyte activation and even alleviating the immunosuppressive microenvironment to some extent.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Imunoterapia , DNA/metabolismo
14.
J Am Chem Soc ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930579

RESUMO

Because of tumor heterogeneity and the immunosuppressive tumor microenvironment, most cancer vaccines typically do not elicit robust antitumor immunological responses in clinical trials. In this paper, we report findings about a bioadhesive nanoparticle (BNP)-based separable cancer vaccine, FeSHK@B-ovalbumin (OVA), to target multi-epitope antigens and exert effective cancer immunotherapy. After the FeSHK@B-OVA "nanorocket" initiates the "satellite-rocket separation" procedure in the acidic tumor microenvironment, the FeSHK@B "launch vehicle" can amplify intracellular oxidative stress persistently. This procedure allows for bioadhesiveness-mediated prolonged drug retention within the tumor tissue and triggers the immunogenic death of tumor cells that transforms the primary tumors into antigen depots, which acts synergistically with the OVA "satellite" to trigger robust antigen-specific antitumor immunity. The cooperation of these two immunostimulants not only efficiently inhibits the primary tumor growth and provokes durable antigen-specific immune activation in vivo but also activates a long-term and robust immune memory effect to resist tumor rechallenge and metastasis. These results highlight the enormous potential of FeSHK@B-OVA to serve as an excellent therapeutic and prophylactic cancer nanovaccine. By leveraging the antigen depots in situ and the synergistic effect among multi-epitope antigens, such a nanovaccine strategy with stealthy bioadhesion may offer a straightforward and efficient approach to developing various cancer vaccines for different types of tumors.

15.
Cancer Sci ; 114(6): 2445-2459, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36799474

RESUMO

Neuroendocrine prostate cancer (NEPC), the most lethal subtype of castration-resistant prostate cancer (PCa), may evolve from the neuroendocrine differentiation (NED) of PCa cells. However, the molecular mechanism that triggers NED is unknown. Trigred motif 36 (TRIM36), a member of the TRIM protein family, exhibits oncogenic or anti-oncogenic roles in various cancers. We have previously reported that TRIM36 is highly expressed to inhibit the invasion and proliferation of PCa. In the present study, we first found that TRIM36 was lowly expressed in NEPC and its overexpression suppressed the NED of PCa. Next, based on proteomic analysis, we found that TRIM36 inhibited the glycolysis pathway through suppressing hexokinase 2 (HK2), a crucial glycolytic enzyme catalyzing the conversion of glucose to glucose-6-phosphate. TRIM36 specifically bound to HK2 through lysine 48 (lys48)-mediated ubiquitination of HK2. Moreover, TRIM36-mediated ubiquitination degradation of HK2 downregulated the level of glutathione peroxidase 4 (GPx4), a process that contributed to ferroptosis. In conclusion, TRIM36 can inhibit glycolysis via lys48-mediated HK2 ubiquitination to reduce GPX4 expression and activate ferroptosis, thereby inhibiting the NED in PCa. Targeting TRIM36 might be a promising approach to retard NED and treat NEPC.


Assuntos
Hexoquinase , Neoplasias da Próstata , Masculino , Humanos , Hexoquinase/metabolismo , Proteômica , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ubiquitinação , Diferenciação Celular
16.
Cells ; 12(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672172

RESUMO

Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/ß tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/ß tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/ß tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Eletricidade Estática , Microtúbulos/metabolismo
17.
Acta Pharm Sin B ; 12(12): 4472-4485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561996

RESUMO

Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation. Inspired by the fact that H2S can also serve as a promoter for intracellular Ca2+ influx, tumor-specific nanomodulators (I-CaS@PP) have been constructed by encapsulating calcium sulfide (CaS) and indocyanine green (ICG) into methoxy poly (ethylene glycol)-b-poly (lactide-co-glycolide) (PLGA-PEG). I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H2S release. The released H2S can effectively suppress the catalase (CAT) activity and synergize with released Ca2+ to facilitate abnormal Ca2+ retention in cells, thus leading to mitochondria destruction and amplification of oxidative stress. Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins (HSPs) expression, which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance. Such a H2S-boosted Ca2+-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment, indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.

18.
Front Oncol ; 12: 974227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523994

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have changed the treatment landscape of several cancer types. However, data are lacking with regard to the clinical responsiveness of ICIs in patients with advanced non-small cell lung cancer (NSCLC) after standard first-line chemotherapy. Therefore, we aimed to evaluate the clinical efficacy of ICI alone or in combination with chemotherapy for patients with advanced NSCLC after first-line platinum-based chemotherapy. Methods: We retrospectively collected patients with confirmed advanced NSCLC who underwent ICI monotherapy or ICI plus chemotherapy after first-line platinum-based chemotherapy between January 2018 and December 2020. A propensity score matching analysis was used to balance baseline characteristics between the two treatment groups. Kaplan-Meier methods and multivariable Cox regressions were used for survival analyses. Results: Among 832 eligible patients, 222 received ICI monotherapy and 610 received ICI plus chemotherapy. The median overall survival (OS) of patients who received ICI plus chemotherapy was 16.0 months compared with 13.1 months in patients who received ICI monotherapy (HR: 0.64, 95% CI: 0.49-0.85, P = 0.002). After 1:1 propensity score matching, all baseline characteristics were well-balanced between the two treatment groups. Patients who received ICI plus chemotherapy had significantly longer OS than those who received ICI monotherapy (NR vs. 13.1 months, HR: 0.50, 95% CI: 0.34-0.71, P < 0.001). Meanwhile, the median time to treatment discontinuation was 4.4 months in the ICI-chemo group and 3.5 months in the ICI-mono group (HR: 0.72, 95% CI: 0.58-0.89, P = 0.002). The multivariate analysis indicated that treatment regimen was an independent prognostic factor for OS (HR: 0.488, 95% CI: 0.337-0.707, P < 0.001). Moreover, a nomogram that integrated both treatment regimens and clinicopathological factors was created for survival prediction. Conclusion: Our study indicated that patients with advanced NSCLC who received ICI plus chemotherapy after first-line platinum-based chemotherapy tended to have longer OS than those who received ICI monotherapy. The multivariate analysis showed that treatment regimen was an independent prognostic factor for OS. Future prospective studies are needed to confirm these findings.

19.
Comput Struct Biotechnol J ; 20: 4305-4314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051882

RESUMO

Kinesins are microtubule-based motor proteins that play important roles ranging from intracellular transport to cell division. Human Kinesin-5 (Eg5) is essential for mitotic spindle assembly during cell division. By combining molecular dynamics (MD) simulations with other multi-scale computational approaches, we systematically studied the interaction between Eg5 and the microtubule. We find the electrostatic feature on the motor domains of Eg5 provides attractive interactions to the microtubule. Additionally, the folding and binding energy analysis reveals that the Eg5 motor domain performs its functions best when in a weak acidic environment. Molecular dynamics analyses of hydrogen bonds and salt bridges demonstrate that, on the binding interfaces of Eg5 and the tubulin heterodimer, salt bridges play the most significant role in holding the complex. The salt bridge residues on the binding interface of Eg5 are mostly positive, while salt bridge residues on the binding interface of tubulin heterodimer are mostly negative. Such salt bridge residue distribution is consistent with electrostatic potential calculations. In contrast, the interface between α and ß-tubulins is dominated by hydrogen bonds rather than salt bridges. Compared to the Eg5/α-tubulin interface, the Eg5/ß-tubulin interface has a greater number of salt bridges and higher occupancy for salt bridges. This asymmetric salt bridge distribution may play a significant role in Eg5's directionality. The residues involved in hydrogen bonds and salt bridges are identified in this work and may be helpful for anticancer drug design.

20.
World J Clin Cases ; 10(18): 6069-6081, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35949840

RESUMO

BACKGROUND: Icotinib could have potential effect and tolerability when used sequentially with chemotherapy for advanced epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). AIM: To evaluate the efficacy and safety of chemotherapy followed by icotinib maintenance therapy as first-line treatment for advanced EGFR-mutated NSCLC. METHODS: This multicenter, open-label, pilot randomized controlled trial enrolled 68 EGFR-mutated stage IIIB/IV NSCLC patients randomized 2:3 to the icotinib alone and chemotherapy + icotinib groups. RESULTS: The median progression-free survival in the icotinib alone and chemotherapy + icotinib groups was 8.0 mo (95%CI: 3.84-11.63) and 13.4 mo (95%CI: 10.18-16.33), respectively (P = 0.0249). No significant differences were found in the curative effect when considering different cycles of chemotherapy or chemotherapy regimen (all P > 0.05). CONCLUSION: A sequential combination of chemotherapy and EGFR-tyrosine kinase inhibitor is feasible for stage IV EGFR-mutated NSCLC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA