Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(10): 12647-12660, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437590

RESUMO

Three new heteroleptic Ru complexes, CYC-B22, CYC-B23C, and CYC-B23T, were prepared as sensitizers for coadsorbent-free, panchromatic, and efficient dye-sensitized solar cells. They are simultaneously functionalized with highly conjugated anchoring and ancillary ligands to explore the electronic and steric effects on their photovoltaic characteristics. The coadsorbent-free device based on CYC-B22 achieved the best power conversion efficiency (PCE) of 8.63% and a panchromatic response extending to 850 nm. The two stereoisomers, CYC-B23C and CYC-B23T coordinated with an unsymmetrical anchoring ligand, display similar absorption properties and the same driving forces for electron injection as well as dye regeneration. Nevertheless, the devices show not only the remarkably distinct PCE (6.64% vs 8.38%) but also discernible stability. The molecular simulation for the two stereoisomers adsorbed on TiO2 clarifies the distinguishable distances (16.9 Å vs 19.0 Å) between the sulfur atoms in the NCS ligands and the surface of the TiO2, dominating the charge recombination dynamics and iodine binding and therefore the PCE and stability of the devices. This study on the steric effects caused by the highly conjugated and unsymmetrical anchoring ligand on the adsorption geometry and photovoltaic performance of the dyes paves a new way for advancing the molecular design of polypyridyl metal complex sensitizers.

2.
ACS Appl Mater Interfaces ; 11(1): 84-95, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30500151

RESUMO

Photodynamic therapy (PDT) is a noninvasive medical technology that has been applied in cancer treatment where it is accessible by direct or endoscope-assisted light irradiation. To lower phototoxicity and increase tissue penetration depth of light, great effort has been focused on developing new sensitizers that can utilize red or near-infrared (NIR) light for the past decades. Lanthanide-doped upconversion nanoparticles (UCNPs) have a unique property to transduce NIR excitation light to UV-vis emission efficiently. This property allows some low-cost, low-toxicity, commercially available visible light sensitizers, which originally are not suitable for deep tissue PDT, to be activated by NIR light and have been reported extensively in the past few years. However, some issues still remain in the UCNP-assisted PDT platform such as colloidal stability, photosensitizer loading efficiency, and accessibility for targeting ligand installation, despite some advances in this direction. In this study, we designed a facile phospholipid-coated UCNP method to generate a highly colloidally stable nanoplatform that can effectively load a series of visible light sensitizers in the lipid layers. The loading stability and singlet oxygen generation efficiency of this sensitizer-loaded lipid-coated UCNP platform were investigated. We also have demonstrated the enhanced cellular uptake efficiency and tumor cell selectivity of this lipid-coated UCNP platform by changing the lipid dopant. On the basis of the evidence of our results, the lipid-complexed UCNP nanoparticles could serve as an effective photosensitizer carrier for NIR light-mediated PDT.


Assuntos
Raios Infravermelhos , Lipídeos , Nanopartículas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Oxigênio Singlete/metabolismo , Animais , Células HeLa , Humanos , Lipídeos/química , Lipídeos/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Ratos
3.
ACS Nano ; 11(1): 153-162, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27997116

RESUMO

Tattooing has been utilized by the medical community for precisely demarcating anatomic landmarks. This practice is especially important for identifying biopsy sites of nonmelanoma skin cancer (NMSC) due to the long interval (i.e., up to 3 months) between the initial diagnostic biopsy and surgical treatment. Commercially available tattoo pigments possess several issues, which include causing poor cosmesis, being mistaken for a melanocytic lesion, requiring additional removal procedures when no longer desired, and potentially inducing inflammatory responses. The ideal tattoo pigment for labeling of skin biopsy sites for NMSC requires (i) invisibility under ambient light, (ii) fluorescence under a selective light source, (iii) a finite intradermal retention time (ca. 3 months), and (iv) biocompatibility. Herein, we introduce cross-linked fluorescent supramolecular nanoparticles (c-FSNPs) as a "finite tattoo" pigment, with optimized photophysical properties and intradermal retention time to achieve successful in vivo finite tattooing. Fluorescent supramolecular nanoparticles encapsulate a fluorescent conjugated polymer, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (MPS-PPV), into a core via a supramolecular synthetic approach. FSNPs which possess fluorescent properties superior to those of the free MPS-PPV are obtained through a combinatorial screening process. Covalent cross-linking of FSNPs results in micrometer-sized c-FSNPs, which exhibit a size-dependent intradermal retention. The 1456 nm sized c-FSNPs display an ideal intradermal retention time (ca. 3 months) for NMSC lesion labeling, as observed in an in vivo tattoo study. In addition, the c-FSNPs induce undetectable inflammatory responses after tattooing. We believe that the c-FSNPs can serve as a "finite tattoo" pigment to label potential malignant NMSC lesions.


Assuntos
Reagentes de Ligações Cruzadas/química , Corantes Fluorescentes/química , Nanopartículas/química , Tatuagem , Substâncias Macromoleculares/química , Pigmentação , Fatores de Tempo
4.
Med Eng Phys ; 27(4): 295-304, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15823470

RESUMO

A few finite element models have addressed the dynamic juxtaarticular stress transmission but none focused the investigation on the combined influence of the individual moduli of the underlying bones, including the subchondral plate, the femoral head and the femoral neck of the proximal femur. A finite element model including the acetabulum and the proximal femur was analyzed with dynamic loadings to study the effects of mechanical property changes in the underlying bones of the proximal femur on the stress distribution in the cartilage at the hip joint. We found the stress distribution was most sensitive to the subchondral plate stiffening, while the overall stiffening of the underlying bones had mild effect on the shear stress on the cartilage surface (or at the subchondral bone/cartilage interface) and on the strain energy density in the cartilage. Our results indicate that the subchondral plate plays a predominant mechanical role in the initial degeneration of the cartilage. The results may offer a mechanical explanation as to why the cartilage failure is common in patients with osteoarthritis but rare in patients with osteoporosis.


Assuntos
Doenças das Cartilagens/fisiopatologia , Cartilagem Articular/fisiopatologia , Cabeça do Fêmur/fisiopatologia , Colo do Fêmur/fisiopatologia , Modelos Biológicos , Osteoartrite do Quadril/fisiopatologia , Osteoporose/fisiopatologia , Animais , Doenças das Cartilagens/complicações , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Humanos , Mecanotransdução Celular , Osteoartrite do Quadril/complicações , Osteoporose/complicações , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA