Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Heliyon ; 10(13): e34243, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091947

RESUMO

With the rapid development of biotechnology, long non-coding RNAs (lncRNAs) have shown promising potential for cancer treatment and may become novel therapeutic targets. This study aimed to explore the roles of lncRNAs in retinoblastoma (RB). It involves analysing differentially expressed lncRNAs in RB and normal tissues from the GSE111168 and GSE125903 datasets, further validating them in RB cells. Our findings determined that lncRNA MIMT1 was upregulated in RB cell lines and tissues. In WERI-Rb1 and Y79 cells, silencing MIMT1 significantly inhibited cell proliferation, whereas MIMT1 overexpression enhanced cell proliferation. Furthermore, in vivo xenograft experiments demonstrated that MIMT1 knockdown suppressed tumour volume and weight. Subsequent mechanistic investigations showed that MIMT1 upregulates fibroblast expression of FGF2 by binding to miR-153-5p, ultimately promoting RB cell proliferation. This suggest that MIMT1 functions as an oncogene in RB and potentially serves as a molecular marker for diagnostic and prognostic assessments. Thus, the MIMT1/miR-153-5p/FGF2 pathway is a promising therapeutic target for RB treatment.

2.
Nat Commun ; 15(1): 5936, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009560

RESUMO

Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.


Assuntos
Cifozoários , Análise de Célula Única , Natação , Animais , Cifozoários/genética , Cifozoários/fisiologia , Diapausa/genética , Genômica/métodos , Genoma/genética , Transcriptoma , Perfilação da Expressão Gênica
3.
Anal Chem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023238

RESUMO

The adjustment of the emission wavelengths and cell permeability of the perylene diimides (PDI) for multicolor cell imaging is a great challenge. Herein, based on a bay-region substituent engineering strategy, multicolor perylene diimides (MCPDI) were rationally designed and synthesized by introducing azetidine substituents on the bay region of PDIs. With the fine-tuned electron-donating ability of the azetidine substituents, these MCPDI showed high brightness, orange, red, and near infrared (NIR) fluorescence along with Stokes shifts increasing from 35 to 110 nm. Interestingly, azetidine substituents distorted to the plane of the MCPDI dyes, and the twist angle of monosubstituted MCPDI was larger than that of disubstituted MCPDI, which might efficiently decrease their π-π stacking. Moreover, all of these MCPDI dyes were cell-permeable and selectively stained various organelles for multicolor imaging of multiple organelles in living cells. Two-color imaging of lipid droplets (LDs) and other organelles stained with MCPDI dyes was performed to reveal the interaction between the LDs and other organelles in living cells. Furthermore, a NIR-emitting MCPDI dye with a mitochondria-targeted characteristic was successfully applied for tumor-specific imaging. The facile synthesis, excellent stability, high brightness, tunable fluorescence emission, and Stokes shifts make these MCPDI promising fluorescent probes for biological applications.

4.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822833

RESUMO

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Assuntos
Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Saccharum , Ácido Salicílico , Transdução de Sinais , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Saccharum/genética , Saccharum/microbiologia , Transdução de Sinais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Acetatos/farmacologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Ácido Abscísico/metabolismo , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade
5.
Discov Oncol ; 15(1): 227, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874696

RESUMO

PURPOSE: To assess the prognostic value of three novel biomarkers, DNA ploidy, stroma-tumor fraction, and nucleotyping, seeking for more accurate stratification in stage II colon cancer. METHODS: A total of 417 patients with complete follow up information were enrolled in this study and divided into three clinical risk groups. IHC was performed to examine MSI status. DNA ploidy, stroma and nucleotyping were estimated using automated digital imaging system. Kaplan-Meier survival curves, Cox proportional hazards regression models, and correlation analyses were carried out to process our data. RESULTS: In the whole cohort of stage II colon cancer, nucleotyping and DNA ploidy were significant prognostic factors on OS in univariate analyses. The combination of nucleotyping and DNA ploidy signified superior OS and DFS. Difference was not significant between low-stroma and high-stroma patients. In multivariable analyses, nucleotyping and the combination of nucleotyping and DNA ploidy were proven the dominant contributory factors for OS. In the low-risk group, we found the combination of nucleotyping and DNA ploidy as the independent prognostic factor statistically significant in both univariate and multivariable, while in the high-risk group, the nucleotyping. CONCLUSIONS: Our study has proven nucleotyping and the combination of DNA ploidy and nucleotyping as independent prognostic indicators, thus expanding the application of nucleotyping as a predictor from high risk stage II colon cancer to whole risks.

6.
Ibrain ; 10(2): 186-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915952

RESUMO

This study aimed to explore whether the combined application of desflurane and dexmedetomidine (Dex) reduces the occurrence of postoperative neurocognitive disorders (PND) in patients. We selected patients in our hospital who underwent surgery under general anesthesia, and divided them into two groups: Dex and desflurane (Dex + Des) and desflurane (Des) groups. The data of patients were collected and the Mini-Mental State Examination (MMSE) score was used to assess cognitive status. The blood cell counts were determined preoperatively and on postoperative days 1, 3, and 6, and the percentage of neutrophils and lymphocytes were also recorded. The statistical methods used were the independent-samples t-test and the χ 2 test. Pearson's correlation was used to analyze the correlation between PND and inflammation. The incidence of PND in the Dex + Des group was lower than that in the Des group. The postoperative MMSE scores in the Dex + Des group were higher than those in the Des group (p = 0.032). The percentage of neutrophils in the Dex + Des group was significantly lower than that in the Des group on the first and third days after surgery (p = 0.007; p = 0.028). The MMSE scores on the first day after surgery were negatively correlated with the multiple changes in white blood counts and the percentage of neutrophils (r = -0.3038 and -0.3330). Dex combined with Des reduced the incidence of PND and reduced the postoperative inflammatory cell counts.

7.
J Agric Food Chem ; 72(23): 13205-13216, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809782

RESUMO

Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.


Assuntos
Ciclopentanos , Resistência à Doença , Fusarium , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Proteínas de Plantas , Saccharum , Ácido Salicílico , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Saccharum/genética , Saccharum/microbiologia , Saccharum/metabolismo , Saccharum/imunologia , Fusarium/fisiologia , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/imunologia , Etilenos/metabolismo
8.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592870

RESUMO

Sugarcane (Saccharum spp.), a major cash crop that is an important source of sugar and bioethanol, is strongly influenced by the impacts of biotic and abiotic stresses. The intricate polyploid and aneuploid genome of sugarcane has shown various limits for conventional breeding strategies. Nonetheless, biotechnological engineering currently offers the best chance of introducing commercially significant agronomic features. In this study, an efficient Agrobacterium-mediated transformation system that uses the herbicide-resistant CP4-EPSPS gene as a selection marker was developed. Notably, all of the plants that were identified by PCR as transformants showed significant herbicide resistance. Additionally, this transformation protocol also highlighted: (i) the high yield of transgenic lines from calli (each gram of calli generated six transgenic lines); (ii) improved selection; and (iii) a higher transformation efficiency. This protocol provides a reliable tool for a routine procedure for the generation of resilient sugarcane plants.

9.
Angew Chem Int Ed Engl ; 63(27): e202401756, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651647

RESUMO

There is a pressing need for methods that can connect enantioenriched organic compounds with readily accessible building blocks via asymmetric functionalization of unreactive chemical bonds in organic synthesis and medicinal chemistry. Herein, the asymmetric chemoselective cleavage of two unactivated C(Ar)-O bonds in the same molecule is disclosed for the first time through an unusual nickel-catalyzed carbomagnesiation. This reaction facilitates the evolution of a novel atroposelective ring-opening difunctionalization. Utilizing readily available dibenzo bicyclic substrates, diverse valuable axially chiral biaryls are furnished with high efficiencies. Synthetic elaborations showcase the application potential of this method. The features of this method include good atom-economy, multiple roles of the nucleophile, and a simple catalytic system that enables the precise magnesiation of an α-C(Ar)-O bond and arylation of a ß-C(Ar)-O bond.

10.
Sci Rep ; 14(1): 7652, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561456

RESUMO

Considering the effect of SIRT1 on improving myocardial fibrosis and GAS5 inhibiting occurrence and development of myocardial fibrosis at the cellular level, the aim of the present study was to investigate whether LncRNA GAS5 could attenuate cardiac fibrosis through regulating mir-217/SIRT1, and whether the NLRP3 inflammasome activation was involved in this process. Isoprenaline (ISO) was given subcutaneously to the male C57BL/6 mice to induce myocardial fibrosis and the AAV9 vectors were randomly injected into the left ventricle of each mouse to overexpress GAS5. Primary myocardial fibroblasts (MCFs) derived from neonatal C57BL/6 mice and TGF-ß1 were used to induce fibrosis. And the GAS5 overexpressed MCFs were treated with mir-217 mimics and mir-217 inhibitor respectively. Then the assays of expression levels of NLRP3, Caspase-1, IL-1ß and SIRT1 were conducted. The findings indicated that the overexpression of GAS5 reduced the expression levels of collagen, NLRP3, Capase-1, IL-1ß and SIRT1 in ISO treated mice and TGF-ß1 treated MCFs. However, this effect was significantly weakened after mir-217 overexpression, but was further enhanced after knockdown of mir-217. mir-217 down-regulates the expression of SIRT1, leading to increased activation of the NLRP3 inflammasome and subsequent pyroptosis. LncRNA GAS5 alleviates cardiac fibrosis induced via regulating mir-217/SIRT1 pathway.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Isoproterenol/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamassomos , Sirtuína 1/genética , Camundongos Endogâmicos C57BL , Fibrose
11.
ISME Commun ; 4(1): ycae036, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38571744

RESUMO

Host-associated microbiomes can play key roles in the metamorphosis of animals. Most scyphozoan jellyfish undergo strobilation in their life cycles, similar to metamorphosis in classic bilaterians. The exploration of jellyfish microbiomes may elucidate the ancestral mechanisms and evolutionary trajectories of metazoan-microbe associations and interactions during metamorphosis. However, current knowledge of the functional features of jellyfish microbiomes remains limited. Here, we performed a genome-centric analysis of associated microbiota across four successive life stages (polyp, early strobila, advanced strobila, and ephyra) during strobilation in the common jellyfish Aurelia coerulea. We observed shifts in taxonomic and functional diversity of microbiomes across distinct stages and proposed that the low microbial diversity in ephyra stage may be correlated with the high expression of the host-derived antimicrobial peptide aurelin. Furthermore, we recovered 43 high-quality metagenome-assembled genomes and determined the nutritional potential of the dominant Vibrio members. Interestingly, we observed increased abundances of genes related to the biosynthesis of amino acids, vitamins, and cofactors, as well as carbon fixation during the loss of host feeding ability, indicating the functional potential of Aurelia-associated microbiota to support the synthesis of essential nutrients. We also identified several potential mechanisms by which jellyfish-associated microbes establish stage-specific community structures and maintain stable colonization in dynamic host environments, including eukaryotic-like protein production, bacterial secretion systems, restriction-modification systems, and clustered regularly interspaced short palindromic repeats-Cas systems. Our study characterizes unique taxonomic and functional changes in jellyfish microbiomes during strobilation and provides foundations for uncovering the ancestral mechanism of host-microbe interactions during metamorphosis.

12.
Mar Environ Res ; 196: 106441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484650

RESUMO

Scyphozoan jellyfish, known for their evolutionary position and ecological significance, are thought to exhibit relatively notable resilience to ocean acidification. However, knowledge regarding the molecular mechanisms underlying the scyphozoan jellyfish response to acidified seawater conditions is currently lacking. In this study, two independent experiments were conducted to determine the physiological and molecular responses of moon jellyfish (Aurelia coerulea) polyps to within- and trans-generational exposure to two reduced pH treatments (pH 7.8 and pH 7.6). The results revealed that the asexual reproduction of A. coerulea polyps significantly declined under acute exposure to pH 7.6 compared with that of polyps at ambient pH conditions. Transcriptomics revealed a notable upregulation of genes involved in immunity and cytoskeleton components. In contrast, genes associated with metabolism were downregulated in response to reduced pH treatments after 6 weeks of within-generational acidified conditions. However, reduced pH treatments had no significant influence on the asexual reproduction of A. coerulea polyps after exposure to acidified conditions over a total of five generations, suggesting that A. coerulea polyps may acclimate to low pH levels. Transcriptomics revealed distinct gene expression profiles between within- and trans-generational exposure groups to two reduced pH treatments. The offspring polyps of A. coerulea subjected to trans-generational acidified conditions exhibited both upregulated and downregulated expression of genes associated with metabolism. These physiological and transcriptomic characteristics of A. coerulea polyps in response to elevated CO2 levels suggest that polyps produced asexually under acidified conditions may be resilient to such conditions in the future.


Assuntos
Cnidários , Cifozoários , Animais , Água do Mar , Transcriptoma , Concentração de Íons de Hidrogênio , Cifozoários/fisiologia , Perfilação da Expressão Gênica
13.
World J Clin Cases ; 12(3): 575-581, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38322469

RESUMO

BACKGROUND: Breast cancer brain metastasis (BCBM) is an advanced breast disease that is difficult to treat and is associated with a high risk of death. Patient prognosis is usually poor, with reduced quality of life. In this context, we report the case of a patient with HER-2-positive BCBM treated with a macromolecular mAb (inetetamab) combined with a small molecule tyrosine kinase inhibitor (TKI). CASE SUMMARY: The patient was a 58-year-old woman with a 12-year history of type 2 diabetes. She was compliant with regular insulin treatment and had good blood glucose control. The patient was diagnosed with invasive carcinoma of the right breast (T3N1M0 stage IIIa, HER2-positive type) through aspiration biopsy of the ipsilateral breast due to the discovery of a breast tumor in February 2019. Immunohistochemistry showed ER (-), PR (-), HER-2 (3+), and Ki-67 (55-60%+). Preoperative neoadjuvant chemotherapy, i.e., the AC-TH regimen (epirubicin, cyclophosphamide, docetaxel-paclitaxel, and trastuzumab), was administered for 8 cycles. She underwent modified radical mastectomy of the right breast in November 2019 and received tocilizumab targeted therapy for 1 year. Brain metastasis was found 9 mo after surgery. She underwent brain metastasectomy in August 2020. Immunohistochemistry showed ER (-) and PR. (-), HER-2 (3+), and Ki-67 (10-20%+). In November 2020, the patient experienced headache symptoms. After an examination, tumor recurrence in the original surgical region of the brain was observed, and the patient was treated with inetetamab, pyrotinib, and capecitabine. Whole-brain radiotherapy was recommended. The patient and her family refused radiotherapy for personal reasons. In September 2021, a routine examination revealed that the brain tumor was considerably larger. The original systemic treatment was continued and combined with intensity-modulated radiation therapy for brain metastases, followed by regular hospitalization and routine examinations. The patient's condition is generally stable, and she has a relatively high quality of life. This case report demonstrates that in patients with BCBM and resistance to trastuzumab, inetetamab combined with pyrotinib and chemotherapy can prolong survival. CONCLUSION: Inetetamab combined with small molecule TKI drugs, chemotherapy and radiation may be an effective regimen for maintaining stable disease in patients with BCBM.

14.
BMC Anesthesiol ; 24(1): 59, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336616

RESUMO

BACKGROUND: This study assessed the impact of pressure-controlled ventilation (PCV) focusing on end-inspiratory flow rate on the incidence of postoperative pulmonary complications (PPCs) and inflammation levels in patients undergoing spinal surgery in the prone position. METHODS: A total of 187 patients who underwent posterior spinal surgery were enrolled and randomly divided into 3 groups: 61 in the volume-controlled ventilation (VCV) group (group V), 62 in the PCV-volume-guaranteed (VG) group (group P1), and 64 in the PCV-VG end-expiratory zero flow rate group (group P2). Indicators including tidal volume (VT), peak airway pressure (Ppeak), and dynamic lung compliance (Cdyn) were recorded. The Ppeak, Cdyn, PETCO2, and oxygenation index (PaO2/FiO2) after intubation (T0), after prone position (T1), 60 min after prone position (T2), and after supine position at the end of surgery (T3) of the three groups were collected. RESULTS: In the within-group comparison, compared with T0, Ppeak increased at T1 - 2 in groups V and P1 (P < 0.01), whereas it decreased at T1 - 3 in group P2 (P < 0.01). Cdyn decreased at T1 - 2 and PaO2/FiO2 increased at T1 - 3 in all three groups (P < 0.01), and PaO2/FiO2 increased at T1 - 3 (P < 0.01). Compared with group V, Ppeak decreased at T0 - 3 in group P1 (P < 0.01) and at T1 - 3 in group P2 (P < 0.01), while Cdyn increased at T0 - 3 in groups P1 and P2 (P < 0.01). Compared with group P1, Ppeak was elevated at T0 (P < 0.01) and decreased at T1 - 3 (P < 0.05), and Cdyn was elevated at T0 - 3 in group P2 (P < 0.01). The total incidence of PPCs in group P2 was lower than that in group V (P < 0.01). Compared with the preoperative period, serum interleukin 6 (IL-6) and C-reactive protein (CRP) levels were increased at 24 and 72 h after surgery in group V (P < 0.01), whereas that was increased at 24 h after surgery in group P1 and group P2 (P < 0.01). Compared with group V, serum IL-6 and CRP levels were reduced at 24 h after surgery in groups P1 and P2 (P < 0.01 or < 0.05). CONCLUSION: In patients undergoing spinal surgery in the prone position, PCV-VG targeting an end-inspiratory zero flow rate lowers the incidence of PPCs and inflammation levels.


Assuntos
Interleucina-6 , Síndrome do Desconforto Respiratório , Humanos , Decúbito Ventral , Respiração Artificial , Volume de Ventilação Pulmonar
15.
Biochem Genet ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393623

RESUMO

N6-methyladenosine (m6A) regulates gene expression and governs many important biological processes. However, the function of m6A in the development of bronchopulmonary dysplasia (BPD) remains poorly characterized. Thus, the purpose of this investigation was to evaluate the effects of m6A RNA methylation regulators on the development of BPD. BPD-related transcriptome data were downloaded from the GEO database. Differentially expressed m6A methylation regulators between BPD and control group were identified. Consensus clustering was conducted for the classification of BPD and association between clusters and BPD phenotypes were explored. Analysis of differentially expressed genes (DEGs) and immune-related DEGs was performed. The GSEA, GO and KEGG analyses were used to interpret the functional enrichments. The composition of immune cell subtypes in BPD subsets was predicted by CIBERSORT analysis. Compared with the control group, expression of most m6A regulators showed significant alteration, especially for IGF2BP1/2/3. BPD was classified into 2 subsets, and cluster 1 was correlated with severe BPD. Furthermore, the results of functional enrichment analyses showed a disturbed immune-related signaling pathway. Based on CIBERSORT analysis, we found that the proportion of immune cell subsets changed between cluster 1 and cluster 2. Our study revealed the implication of m6A methylation regulators in the development of BPD, which might provide a novel insight for the diagnosis and treatment of BPD.

16.
Heliyon ; 9(12): e22086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046167

RESUMO

Long non-coding RNAs (lncRNAs) have been discovered through many studies to play a crucial role in tumor progression. LncRNA PCAT5 has been identified as a human cancer-related gene in diverse cancers. However, the specific role of PCAT5 in esophageal squamous cell carcinoma (ESCC) still needs further study. The study aimed to test the PCAT5 expression and find its biological function in ESCC. Functional experiments, including EdU, transwell and TUNEL, were done in the chosen ESCC cell lines under silenced PCAT5. Luciferase reporter and Western blot experiments were implemented to ensure the possible regulatory mechanism involved in ESCC. PCAT5 presented higher expression in ESCC cells in comparison to normal cells. The silence of PCAT5 restrained ESCC cell abilities of proliferation, migration and invasion. On the contrary, it accelerated ESCC cell apoptosis. The results of rescue experiments showed that PCAT5 regulated ESCC cell proliferative, migrated, invasive and apoptotic abilities via sponging miR-4295 to up-regulate PHF20.

17.
Aging (Albany NY) ; 15(23): 13822-13839, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048229

RESUMO

Preeclampsia (PE) is a pregnancy-specific cardiovascular complication that is the leading cause of maternal and neonatal morbidity and mortality. Previous studies have indicated the importance of immune cells, such as M1 and M2 macrophages, in the pathogenesis of PE. However, the mechanisms leading to immune dysregulation are unclear. Data-independent acquisition proteomic analysis was performed on placental tissues collected from patients with PE and healthy controls. Transcriptome data for placenta samples from patients with PE and their corresponding controls were obtained from the Gene Expression Omnibus database. Differential analysis of transcriptome and proteome data between PE and control groups was performed using R software. Immunocytic infiltration scoring was performed using the quantiseq algorithm. Weighted gene co-expression network analysis (WGCNA) screened for feature genes associated with M1 cell infiltration. Protein-protein interaction (PPI) analysis identified hub genes. We confirm that the infiltration score of M1 macrophages was significantly increased in the placental tissues of patients with PE. Differential analysis, WGCNA, and PPI analysis identified four hub molecules associated with M1 cell infiltration (HTRA4, POGK, MFAP5, and INHBA). The hub molecules displayed dysregulated expression in PE tissues. The qPCR, Western blots, and immunohistochemistry analyses confirmed that Inhibin, beta A (INHBA) was highly expressed in placental tissues of patients with PE. Immunofluorescence revealed the extensive infiltration of M1 macrophages in the placental tissues of patients with PE and their co-localization with INHBA. The collective results identified hub genes associated with M1 macrophage infiltration, providing potential targets for the pathogenesis and treatment of PE.


Assuntos
Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Pré-Eclâmpsia/genética , Proteômica , Placenta , Macrófagos , Algoritmos
18.
iScience ; 26(12): 108444, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125018

RESUMO

Jellyfish represent one of the most basal animal groups with complex life cycles. The polyp-to-medusa transition, termed strobilation, is the pivotal process that determines the switch in swimming behavior and jellyfish blooms. Their microbiota plays an essential role in strobilation. Here, we investigated microbiota-mediated host phenotype dynamics during strobilation in the jellyfish Aurelia coerulea via antibiotic-induced microbiome alteration. Microbial depletion delayed the initiation of strobilation and resulted in fewer segments and ephyrae, which could be restored via microbial recolonization. Jellyfish-associated cyanobacteria, which were eliminated by antibiotics in the polyp stage, had the potential to supply retinal and trigger the retinoic acid signaling cascade, which drove the strobilation process. The microbiota regulated nematocyte development and differentiation, influencing the feeding and growth of the jellyfish. The findings improve our understanding of jellyfish-microbe interactions and provide new insights into the role of the microbiota in shaping feeding behavior through nematocyte dynamics.

19.
Clin Lab ; 69(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948483

RESUMO

BACKGROUND: Cell population data (CPD) are parameters of cell size, shape, and content that can be used in the differential diagnosis of diseases such as leukemia, bacterial or viral infection, and dengue fever. The aim of this study was to screen for CPD parameters that can be used to differentiate active pulmonary tuberculosis (APTB) from lung cancer (LC) and to assess their efficacy. METHODS: Whole blood samples from 84 APTB patients, 109 LC patients, and 95 healthy volunteers were collected from January 2019 to November 2019. All samples were tested by DxH800 blood cell analyzer using VCS (volume, conductivity, and scatter) technology to obtain CPD parameters, total leukocyte count, and leukocyte classification count. The results were tested for normal distribution, followed by one-way analysis of variance (ANOVA) and area under the ROC curve (AUC) analysis to evaluate the diagnostic efficacy of CPD parameters. RESULTS: Twenty-three CPD parameters were significantly higher in the APTB group than in the LC group, 13 CPD parameters were significantly lower than in the LC group, and 6 CPD parameters were not statistically different between the two groups. The AUCs of CPD parameters between the APTB and LC groups were analyzed, and the results showed that the AUCs of nine CPD parameters were higher than 0.91, with the AUCs of neutronphil mean conductance (NMC), lymphocyte mean conductance (LMC), and monocyte mean conductance (MMC) even reaching 0.983, 0.930, and 0.996, respectively. Meanwhile, compared with the CPD parameters, white blood cells and their conventional differential counts (WBC, NE%, LY%, MO%) did not result in higher AUCs for the two groups (0.641, 0.757, 0.659, 0.733, respectively). CONCLUSIONS: Three CPD parameters (NMC, LMC, and MMC) obtained higher AUC than other indicators, and their combined diagnosis efficacy obtained 100% sensitivity and 99.1% specificity, which may be helpful for clinical differential diagnosis of APTB and LC.


Assuntos
Neoplasias Pulmonares , Tuberculose Pulmonar , Humanos , Neoplasias Pulmonares/diagnóstico , Leucócitos , Contagem de Leucócitos , Linfócitos , Tuberculose Pulmonar/diagnóstico
20.
Future Oncol ; 19(36): 2395-2403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990937

RESUMO

At present, preoperative chemotherapy is the standard of care for the neoadjuvant treatment of potentially resectable gastric cancer (GC). However, because the efficacy and prognosis are not ideal, curative effects for this population are unsatisfactory. With the development of immune checkpoint inhibitors, the results of a few encouraging early trials of immunotherapeutic agents as neoadjuvant therapies for resectable GC have been reported. However, markers of the efficacy of immune checkpoint inhibitors remain unclear. This prospective single-center, single-arm observational study was designed to evaluate the efficacy of sintilimab plus the fluorouracil, leucovorin, oxaliplatin and docetaxel regimen as a neoadjuvant treatment for localized GC. More importantly, this work assesses multiple dimensions and include ctDNA, the immune microenvironment and intestinal microbiome to explore correlations between biomarkers and neoadjuvant therapeutic efficacy. Clinical trial registration: ChiCTR2200061629 (www.chictr.org.cn/index.aspx).


Assuntos
Neoplasias Gástricas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores , Docetaxel/uso terapêutico , Fluoruracila/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Leucovorina/uso terapêutico , Terapia Neoadjuvante/métodos , Oxaliplatina/uso terapêutico , Estudos Prospectivos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA