Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38963643

RESUMO

BACKGROUND: The current understanding of the prognostic significance of B cells and their role in the tumor microenvironment (TME) in esophageal carcinoma (ESCA) is limited. METHODS: We conducted a screening for B-cell-related genes through the analysis of single-cell transcriptome data. Subsequently, we developed a B-cell-related gene signature (BRGrisk) using LASSO regression analysis. Patients from The Cancer Genome Atlas cohort were divided into a training cohort and a test cohort. Patients were categorized into high- and low-risk groups based on their median BRGrisk scores. The overall survival was assessed using the Kaplan-Meier method, and a nomogram based on BRGrisk was constructed. Immune infiltration profiles between the risk groups were also compared. RESULTS: The BRGrisk prognostic model indicated significantly worse outcomes for patients with high BRGrisk scores (p < 0.001). The BRGrisk-based nomogram exhibited good prognostic performance. Analysis of immune infiltration revealed that patients in the high-BRGrisk group had notably higher levels of immune cell infiltration and were more likely to be in an immunoresponsive state. Enrichment analysis showed a strong correlation between the prognostic gene signature and cancer-related pathways. IC50 results indicated that patients in the low-BRGrisk group were more responsive to common drugs compared to those in the high-BRGrisk group. CONCLUSIONS: This study presents a novel BRGrisk that can be used to stratify the prognosis of ESCA patients and may offer guidance for personalized treatment strategies aimed at improving prognosis.

2.
PLoS One ; 19(6): e0300632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917144

RESUMO

OBJECTIVES: Lu's approach for video-assisted thoracoscopic surgery (LVATS), which derives from UVATS, is a novel surgical approach for VATS and carries out micro-innovation for lung cancer resection. The objective of this study is to elucidate the safety, feasibility, and efficacy of this novel surgical approach. METHODS: The clinical data of patients with non-small cell lung cancer (NSCLC) who underwent a curative thoracoscopic lobectomy between Mar. 2021 and Mar. 2022, were retrospectively collected, and analyzed. According to whether applied Lu's approach during the VATS operation, patients were divided into the LVATS group and the UVATS group. The propensity score (PS) matching method was used to reduce selection bias by creating two groups. After generating the PSs, 1:1 ratio and nearest-neighbor score matching was completed. Perioperative variables, including the operation time, intraoperative blood loss, lymph node stations dissected, total drainage volume, drainage duration, postoperative hospital stay, pain score (VAS, Visual Analogue Scale) on the postoperative first day (POD1) and third day (POD3), and incidence of postoperative complications, were compared between the two groups. The data were analyzed statistically with P<0.05 defined as statistically significant. RESULTS: A total of 182 patients were identified, among whom 86 patients underwent LVATS and 96 UVATS. Propensity matching produced 62 pairs in this retrospective study. There were no deaths during perioperative period. Patients in the LVATS group experienced a shorter operation time (88 (75, 106) VS 122 (97, 144)min, P <0.001), less intraoperative blood loss(20 (20, 30) VS 25 (20, 50)ml, P = 0.021), shorten incision length (2.50 (2.50, 2.50) VS 3.00 (3.00, 3.50)cm, P <0.001), and more drainage volume (460 (310, 660) VS 345 (225, 600)ml, P = 0.041) than patients in the UVATS group. There was not significant difference in the lymph node stations dissected(5 (4, 5) VS 5 (4, 5), P = 0.436), drainage duration (3 (3, 4) VS 3 (3, 4)days, P = 0.743), length of postoperative hospital stay (4 (4, 5) VS 4 (4, 6)days, P = 0.608), VAS on the POD1(4 (4, 4) VS 4 (4, 4), P = 0.058)and POD3 (3 (3, 4) VS 4 (3, 4), P = 0.219), and incidence of postoperative complications (P = 0.521) between the two groups. CONCLUSIONS: Lu's approach is a safe and feasible approach for video-assisted thoracoscopic surgery for the lobectomy of NSCLC. This approach can shorten surgical time, reduce incision length and intraoperative blood loss.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Complicações Pós-Operatórias , Cirurgia Torácica Vídeoassistida , Humanos , Cirurgia Torácica Vídeoassistida/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/patologia , Idoso , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Duração da Cirurgia , Tempo de Internação , Pneumonectomia/métodos , Pontuação de Propensão , Resultado do Tratamento
3.
Lung Cancer (Auckl) ; 15: 9-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328758

RESUMO

Purpose: Lu's approach for video-assisted thoracoscopic surgery (LVATS), which derives from Uniportal Video-Assisted Thoracoscopic Surgery(UVATS), is a novel surgical approach for VATS and carries out micro-innovation for lung cancer resection. The objective of this study is to elucidate the safety, feasibility, and efficacy of this novel surgical approach. Patients and Methods: The clinical data of patients with non-small cell lung cancer (NSCLC) who underwent a curative thoracoscopic lobectomy between Mar. 2021 and Mar. 2022, were retrospectively collected and analyzed. Patients were divided into the LVATS group and the UVATS group. Propensity score matching (PSM) was used to reduce selection bias and create two comparable groups. Perioperative variables were compared, and a p-value < 0.05 was deemed statistically significant. Results: A total of 182 patients were identified, among whom 86 patients underwent LVATS and 96 UVATS. Propensity matching produced 62 pairs in this retrospective study. There were no deaths during perioperative period. Patients in the LVATS group experienced a shorter operation time (88 (75, 106) VS 122 (97, 144) min, P <0.001), less intraoperative blood loss (20 (20, 30) VS 25 (20, 50) mL, P = 0.021), shorten incision length (2.50 (2.50, 2.50) VS 3.00 (3.00, 3.50) cm, P <0.001), and more drainage volume (460 (310, 660) VS 345 (225, 600) mL, P = 0.041) than patients in the UVATS group. There was not significant difference in the lymph node stations dissected (5 (4, 5) VS 5 (4, 5), P = 0.436), drainage duration (3 (3, 4) VS 3 (3, 4) days, P =0.743), length of postoperative hospital stay (4 (4, 5) VS 4 (4, 6) days, P = 0.608), VAS on the POD1 (4 (4, 4) VS 4 (4, 4), P=0.058) and POD3 (3 (3, 4) VS 4 (3, 4), P=0.219), and incidence of postoperative complications (P=0.521) between the two groups. Conclusion: Lu's approach for video-assisted thoracoscopic lobectomy is safe and feasible, potentially reducing surgery time, incision length, and intraoperative blood loss.

4.
Nat Genet ; 55(8): 1324-1335, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474847

RESUMO

Transposable elements (TEs) are parasitic DNA sequences accounting for over half of the human genome. Tight control of the repression and activation states of TEs is critical for genome integrity, development, immunity and diseases, including cancer. However, precisely how this regulation is achieved remains unclear. Here we develop a targeted proteomic proximity labeling approach to capture TE-associated proteins in human embryonic stem cells (hESCs). We find that the RNA N6-methyladenosine (m6A) reader, YTHDC2, occupies genomic loci of the primate-specific TE, LTR7/HERV-H, specifically through its interaction with m6A-modified HERV-H RNAs. Unexpectedly, YTHDC2 recruits the DNA 5-methylcytosine (5mC)-demethylase, TET1, to remove 5mC from LTR7/HERV-H and prevent epigenetic silencing. Functionally, the YTHDC2/LTR7 axis inhibits neural differentiation of hESCs. Our results reveal both an underappreciated crosstalk between RNA m6A and DNA 5mC, the most abundant regulatory modifications of RNA and DNA in eukaryotes, and the fact that in hESCs this interplay controls TE activity and cell fate.


Assuntos
Elementos de DNA Transponíveis , Células-Tronco Pluripotentes , Animais , Humanos , Diferenciação Celular/genética , Cromatina , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Oxigenases de Função Mista/genética , Células-Tronco Pluripotentes/metabolismo , Primatas/genética , Proteômica , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética
5.
Development ; 149(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504079

RESUMO

There are fundamental differences in how neonatal and adult intestines absorb nutrients. In adults, macromolecules are broken down into simpler molecular components in the lumen of the small intestine, then absorbed. In contrast, neonates are thought to rely on internalization of whole macromolecules and subsequent degradation in the lysosome. Here, we identify the Maf family transcription factors MAFB and c-MAF as markers of terminally differentiated intestinal enterocytes throughout life. The expression of these factors is regulated by HNF4α and HNF4γ, master regulators of enterocyte cell fate. Loss of Maf factors results in a neonatal-specific failure to thrive and loss of macromolecular nutrient uptake. RNA-Seq and CUT&RUN analyses defined an endo-lysosomal program as being downstream of these transcription factors. We demonstrate major transcriptional changes in metabolic pathways, including fatty acid oxidation and increases in peroxisome number, in response to loss of Maf proteins. Finally, we show that loss of BLIMP1, a repressor of adult enterocyte genes, shows highly overlapping changes in gene expression and similar defects in macromolecular uptake. This work defines transcriptional regulators that are necessary for nutrient uptake in neonatal enterocytes.


Assuntos
Fatores de Transcrição Maf , Nutrientes , Camundongos , Animais , Transporte Biológico , Diferenciação Celular , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas c-maf
6.
Nat Commun ; 10(1): 4614, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601814

RESUMO

Autophagy is a central component of integrated stress responses that influences many inflammatory diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). While the core machinery is known, the molecular basis of the epigenetic regulation of autophagy and its role in colon inflammation remain largely undefined. Here, we report that BRG1, an ATPase subunit of the SWI/SNF chromatin remodeling complex, is required for the homeostatic maintenance of intestinal epithelial cells (IECs) to prevent the inflammation and tumorigenesis. BRG1 emerges as a key regulator that directly governs the transcription of Atg16l1, Ambra1, Atg7 and Wipi2, which are important for autophagosome biogenesis. Defective autophagy in BRG1-deficient IECs results in excess reactive oxygen species (ROS), which leads to the defects in barrier integrity. Together, our results establish that BRG1 may represent an autophagy checkpoint that is pathogenetically linked to colitis and is therefore likely a potential therapeutic target for disease intervention.


Assuntos
Autofagia/fisiologia , Colite/etiologia , Neoplasias Colorretais/etiologia , DNA Helicases/genética , Doenças Inflamatórias Intestinais/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Estudos de Casos e Controles , Colite/complicações , Colite/patologia , Neoplasias Colorretais/genética , DNA Helicases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/patologia , Camundongos Knockout , Proteínas Nucleares/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(19): E3796-E3805, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439030

RESUMO

Epithelial barrier disruption is a major cause of inflammatory bowel disease (IBD); however, the mechanism through which epigenetic regulation modulates intestinal epithelial integrity remains largely undefined. Here we show that EZH2, the catalytic subunit of polycomb repressive complex (PRC2), is indispensable for maintaining epithelial cell barrier integrity and homeostasis under inflammatory conditions. In accordance with reduced EZH2 expression in patients, the inactivation of EZH2 in IECs sensitizes mice to DSS- and TNBS-induced experimental colitis. Conversely, EZH2 overexpression in the intestinal epithelium renders mice more resistant to colitis. Mechanistically, the genes encoding TRAF2/5 are held in a finely tuned bivalent status under inflammatory conditions. EZH2 deficiency potentiates the expression of these genes to enhance TNFα-induced NF-κB signaling, thereby leading to uncontrolled inflammation. More importantly, we show that EZH2 depletion compromises the protective role of NF-κB signaling in cell survival by directly up-regulating ITCH, a well-known E3 ligase that degrades the c-FLIP protein. Thus, our findings highlight an epigenetic mechanism by which EZH2 integrates the multifaceted effects of TNFα signaling to promote the inflammatory response and apoptosis in colitis.


Assuntos
Apoptose , Colite/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Mucosa Intestinal/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
J Clin Invest ; 127(4): 1284-1302, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28319045

RESUMO

Loss of phosphatase and tensin homolog (PTEN) and activation of the PI3K/AKT signaling pathway are hallmarks of prostate cancer (PCa). However, these alterations alone are insufficient for cells to acquire metastatic traits. Here, we have shown that the histone dimethyl transferase WHSC1 critically drives indolent PTEN-null tumors to become metastatic PCa. In a PTEN-null murine PCa model, WHSC1 overexpression in prostate epithelium cooperated with Pten deletion to produce a metastasis-prone tumor. Conversely, genetic ablation of Whsc1 prevented tumor progression in PTEN-null mice. Molecular characterization revealed that increased AKT activity due to PTEN loss directly phosphorylates WHSC1 at S172, preventing WHSC1 degradation by CRL4Cdt2 E3 ligase. Increased WHSC1 expression transcriptionally upregulates expression of RICTOR, a pivotal component of mTOR complex 2 (mTORC2), to further enhance AKT activity. Therefore, the AKT/WHSC1/mTORC2 signaling cascade represents a vicious feedback loop that elicits unrestrained AKT signaling. Furthermore, we determined that WHSC1 positively regulates Rac1 transcription to increase tumor cell motility. The biological importance of a WHSC1-mediated signaling cascade is substantiated by patient sample analysis in which WHSC1 signaling is tightly correlated with disease progression and recurrence. Taken together, our findings highlight a pivotal link between an epigenetic regulator, WHSC1, and key intracellular signaling molecules, AKT, RICTOR, and Rac1, to drive PCa metastasis.


Assuntos
Movimento Celular , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Estabilidade Enzimática/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Metástase Neoplásica , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA