Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancer Res ; 82(4): 571-585, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903602

RESUMO

Pyruvate kinase M2 (PKM2) has been shown to promote tumorigenesis by facilitating the Warburg effect and enhancing the activities of oncoproteins. However, this paradigm has recently been challenged by studies in which the absence of PKM2 failed to inhibit and instead accelerated tumorigenesis in mouse models. These results seem inconsistent with the fact that most human tumors overexpress PKM2. To further elucidate the role of PKM2 in tumorigenesis, we investigated the effect of PKM2 knockout in oncogenic HRAS-driven urothelial carcinoma. While PKM2 ablation in mouse urothelial cells did not affect tumor initiation, it impaired the growth and maintenance of HRAS-driven tumors. Chemical inhibition of PKM2 recapitulated these effects. Both conditions substantially reduced complex formation of PKM2 with STAT3, their nuclear translocation, and HIF1α- and VEGF-related angiogenesis. The reduction in nuclear STAT3 in the absence of PKM2 also correlated with decreased autophagy and increased apoptosis. Time-controlled, inducible PKM2 overexpression in simple urothelial hyperplasia did not trigger tumorigenesis, while overexpression of PKM2, but not PKM1, in nodular urothelial hyperplasia with angiogenesis strongly accelerated tumorigenesis. Finally, in human patients, PKM2 was overexpressed in low-grade nonmuscle-invasive and high-grade muscle-invasive bladder cancer. Based on these data, PKM2 is not required for tumor initiation but is essential for tumor growth and maintenance by enhancing angiogenesis and metabolic addiction. The PKM2-STAT3-HIF1α/VEGF signaling axis may play a critical role in bladder cancer and may serve as an actionable therapeutic target. SIGNIFICANCE: Genetic manipulation and pharmacologic inhibition of PKM2 in mouse urothelial lesions highlight its essential role in promoting angiogenesis and metabolic addiction, events indispensable for tumor growth and maintenance.


Assuntos
Carcinoma de Células de Transição/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Piruvato Quinase/genética , Neoplasias da Bexiga Urinária/genética , Transporte Ativo do Núcleo Celular/genética , Animais , Apoptose/genética , Autofagia/genética , Carcinogênese/genética , Carcinoma de Células de Transição/irrigação sanguínea , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Piruvato Quinase/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Nat Commun ; 12(1): 2047, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824349

RESUMO

Human chromosome 9p21.3 is susceptible to inactivation in cell immortalization and diseases, such as cancer, coronary artery disease and type-2 diabetes. Although this locus encodes three cyclin-dependent kinase (CDK) inhibitors (p15INK4B, p14ARF and p16INK4A), our understanding of their functions and modes of action is limited to the latter two. Here, we show that in vitro p15INK4B is markedly stronger than p16INK4A in inhibiting pRb1 phosphorylation, E2F activity and cell-cycle progression. In mice, urothelial cells expressing oncogenic HRas and lacking p15INK4B, but not those expressing HRas and lacking p16INK4A, develop early-onset bladder tumors. The potency of CDKN2B/p15INK4B in tumor suppression relies on its strong binding via key N-terminal residues to and inhibition of CDK4/CDK6. p15INK4B also binds and inhibits enolase-1, a glycolytic enzyme upregulated in most cancer types. Our results highlight the dual inhibition of p15INK4B on cell proliferation, and unveil mechanisms whereby p15INK4B aberrations may underpin cancer and non-cancer conditions.


Assuntos
Ciclo Celular , Cromossomos de Mamíferos/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Glicólise , Aerobiose , Sequência de Aminoácidos , Animais , Ligação Competitiva , Cruzamento , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cruzamentos Genéticos , Inibidor de Quinase Dependente de Ciclina p15/química , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo , Feminino , Humanos , Ligação de Hidrogênio , Masculino , Camundongos Transgênicos , Modelos Moleculares , Oncogenes , Penetrância , Fosfopiruvato Hidratase/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras) , Homologia Estrutural de Proteína , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo
3.
Mol Biol Cell ; 30(24): 2969-2984, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31577526

RESUMO

The apical surface of the terminally differentiated mammalian urothelial umbrella cell is mechanically stable and highly impermeable, in part due to its coverage by urothelial plaques consisting of 2D crystals of uroplakin particles. The mechanism for regulating the uroplakin/plaque level is unclear. We found that genetic ablation of the highly tissue-specific sorting nexin Snx31, which localizes to plaques lining the multivesicular bodies (MVBs) in urothelial umbrella cells, abolishes MVBs suggesting that Snx31 plays a role in stabilizing the MVB-associated plaques by allowing them to achieve a greater curvature. Strikingly, Snx31 ablation also induces a massive accumulation of uroplakin-containing mitochondria-derived lipid droplets (LDs), which mediate uroplakin degradation via autophagy/lipophagy, leading to the loss of apical and fusiform vesicle plaques. These results suggest that MVBs play an active role in suppressing the excessive/wasteful endocytic degradation of uroplakins. Failure of this suppression mechanism triggers the formation of mitochondrial LDs so that excessive uroplakin membranes can be sequestered and degraded. Because mitochondrial LD formation, which occurs at a low level in normal urothelium, can also be induced by disturbance in uroplakin polymerization due to individual uroplakin knockout and by arsenite, a bladder carcinogen, this pathway may represent an inducible, versatile urothelial detoxification mechanism.


Assuntos
Corpos Multivesiculares/metabolismo , Nexinas de Classificação/metabolismo , Urotélio/metabolismo , Animais , Feminino , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Glicoproteínas de Membrana/metabolismo , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Bexiga Urinária/metabolismo , Uroplaquinas/metabolismo , Uroplaquinas/fisiologia
4.
Mol Biol Cell ; 29(26): 3128-3143, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30303751

RESUMO

Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles ("urothelial plaques") covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs' fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.


Assuntos
Especiação Genética , Oócitos/metabolismo , Ovário/metabolismo , Uroplaquinas/genética , Urotélio/metabolismo , Zigoto/metabolismo , Animais , Diferenciação Celular , Feminino , Fertilização/genética , Regulação da Expressão Gênica , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Camundongos Knockout , Oócitos/citologia , Ovário/citologia , Partenogênese/genética , Fosforilação , Filogenia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Testículo/citologia , Testículo/metabolismo , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Uroplaquinas/classificação , Uroplaquinas/metabolismo , Urotélio/citologia , Xenopus laevis , Zigoto/citologia
5.
PLoS One ; 12(1): e0170196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28099513

RESUMO

Uroplakins are a widespread group of vertebrate integral membrane proteins that belong to two different families: UPK1a and UPK1b belong to the large tetraspanin (TSPAN) gene family, and UPK3a, UPK3b, UPK3c, UPK3d, UPK2a and UPK2b form a family of their own, the UPK2/3 tetraspanin-associated family. In a previous study, we reported that uroplakins first appeared in vertebrates, and that uroplakin tetraspanins (UPK1a and UPK1b) should have originated by duplication of an ancestor tetraspanin gene. However, the evolutionary origin of the UPK2/3 family remains unclear. In this study, we provide evidence that the UPK2/3 family originated by gene duplication and domain loss from a protoPTPRQ-like basal deuterostome gene. PTPRQs are members of the subtype R3 tyrosine phosphatase receptor (R3 PTPR) family, which are characterized by having a unique modular composition of extracellular fibronectin (FN3) repeats, a transmembrane helix, and a single intra-cytoplasmic phosphotyrosine phophatase (PTP) domain. Our assumption of a deuterostome protoPTPRQ-like gene as an ancestor of the UPK2/3 family by gene duplication and loss of its PTP and fibronectin (FN3) domains, excluding the one closest to the transmembrane helix, is based on the following: (i) phylogenetic analyses, (ii) the existence of an identical intron/exon gene pattern between UPK2/3 and the corresponding genetic region in R3 PTPRs, (iii) the conservation of cysteine patterns and protein motifs between UPK2/3 and PTPRQ proteins and, (iv) the existence in tunicates, the closest organisms to vertebrates, of two sequences related to PTPRQ; one with the full subtype R3 modular characteristic and another without the PTP domain but with a short cytoplasmic tail with some sequence similarity to that of UPK3a. This finding will facilitate further studies on the structure and function of these important proteins with implications in human diseases.


Assuntos
Evolução Molecular , Duplicação Gênica/genética , Domínios Proteicos/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Uroplaquina III/genética , Uroplaquina II/genética , Sequência de Aminoácidos/genética , Animais , Mineração de Dados , Bases de Dados Genéticas , Fibronectinas/genética , Humanos , Camundongos , Filogenia
6.
Proc Natl Acad Sci U S A ; 113(16): 4494-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044107

RESUMO

The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder.


Assuntos
Proteínas de Bactérias , Fímbrias Bacterianas , Infecções por Proteus , Proteus mirabilis , Urease , Cálculos da Bexiga Urinária , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Feminino , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Infecções por Proteus/genética , Infecções por Proteus/metabolismo , Infecções por Proteus/patologia , Proteus mirabilis/genética , Proteus mirabilis/metabolismo , Proteus mirabilis/patogenicidade , Urease/genética , Urease/metabolismo , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Cálculos da Bexiga Urinária/genética , Cálculos da Bexiga Urinária/metabolismo , Cálculos da Bexiga Urinária/microbiologia , Cálculos da Bexiga Urinária/patologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Escherichia coli Uropatogênica/patogenicidade
7.
Mol Biol Cell ; 27(10): 1621-34, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27009205

RESUMO

Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV-membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.


Assuntos
Queratina-20/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Proteínas SNARE/metabolismo , Urotélio/citologia , Urotélio/metabolismo , Animais , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/metabolismo , Transporte Proteico , Uroplaquinas/genética , Uroplaquinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
8.
PLoS One ; 9(6): e99644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914955

RESUMO

Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understand the mechanism by which these surface-associated uroplakins are degraded. While it is known that endocytosed uroplakin plaques are targeted to and line the multivesicular bodies (MVBs), it is unclear how these rigid-looking plaques can go to the highly curved membranes of intraluminal vesicles (ILVs). From a cDNA subtraction library, we identified a highly urothelium-specific sorting nexin, SNX31. SNX31 is expressed, like uroplakins, in terminally differentiated urothelial umbrella cells where it is predominantly associated with MVBs. Apical membrane proteins including uroplakins that are surface biotin-tagged are endocytosed and targeted to the SNX31-positive MVBs. EM localization demonstrated that SNX31 and uroplakins are both associated not only with the limiting membranes of MVBs containing uroplakin plaques, but also with ILVs. SNX31 can bind, on one hand, the PtdIns3P-enriched lipids via its N-terminal PX-domain, and, on the other hand, it binds uroplakins as demonstrated by co-immunoprecipitation and proximity ligation assay, and by its reduced membrane association in uroplakin II-deficient urothelium. The fact that in urothelial umbrella cells MVBs are the only major intracellular organelles enriched in both PtdIns3P and uroplakins may explain SNX31's MVB-specificity in these cells. However, in MDCK and other cultured cells transfected SNX31 can bind to early endosomes possibly via lipids. These data support a model in which SNX31 mediates the endocytic degradation of uroplakins by disassembling/collapsing the MVB-associated uroplakin plaques, thus enabling the uroplakin-containing (but 'softened') membranes to bud and form the ILVs for lysosomal degradation and/or exosome formation.


Assuntos
Diferenciação Celular , Corpos Multivesiculares/metabolismo , Nexinas de Classificação/metabolismo , Uroplaquinas/metabolismo , Urotélio/citologia , Urotélio/metabolismo , Animais , Biomarcadores/metabolismo , Bovinos , Membrana Celular/metabolismo , Cães , Endocitose , Endossomos/metabolismo , Técnicas de Inativação de Genes , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Corpos Multivesiculares/ultraestrutura , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Ultracentrifugação , Urotélio/enzimologia , Urotélio/ultraestrutura
9.
Mol Biol Cell ; 23(7): 1354-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323295

RESUMO

The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.


Assuntos
Exocitose/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Mielina/metabolismo , Proteolipídeos/metabolismo , Uroplaquinas/metabolismo , Urotélio/citologia , Urotélio/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Membrana Celular/metabolismo , Cães , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Imunoeletrônica , Modelos Biológicos , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/deficiência , Proteínas da Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Transporte Proteico , Proteolipídeos/antagonistas & inibidores , Proteolipídeos/deficiência , Proteolipídeos/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uroplaquinas/deficiência , Uroplaquinas/genética
10.
Am J Physiol Renal Physiol ; 299(2): F387-95, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20427471

RESUMO

Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.


Assuntos
Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , RNA Mensageiro/biossíntese , Urotélio/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Estudos de Viabilidade , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Histonas/metabolismo , Integrases/genética , Óperon Lac , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Protaminas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Uroplaquina II , Urotélio/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 298(3): R534-47, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20032263

RESUMO

NGF has been suggested to play a role in urinary bladder dysfunction by mediating inflammation, as well as morphological and functional changes, in sensory and sympathetic neurons innervating the urinary bladder. To further explore the role of NGF in bladder sensory function, we generated a transgenic mouse model of chronic NGF overexpression in the bladder using the urothelium-specific uroplakin II (UPII) promoter. NGF mRNA and protein were expressed at higher levels in the bladders of NGF-overexpressing (NGF-OE) transgenic mice compared with wild-type littermate controls from postnatal day 7 through 12-16 wk of age. Overexpression of NGF led to urinary bladder enlargement characterized by marked nerve fiber hyperplasia in the submucosa and detrusor smooth muscle and elevated numbers of tissue mast cells. There was a marked increase in the density of CGRP- and substance P-positive C-fiber sensory afferents, neurofilament 200-positive myelinated sensory afferents, and tyrosine hydroxylase-positive sympathetic nerve fibers in the suburothelial nerve plexus. CGRP-positive ganglia were also present in the urinary bladders of transgenic mice. Transgenic mice had reduced urinary bladder capacity and an increase in the number and amplitude of nonvoiding bladder contractions under baseline conditions in conscious open-voiding cystometry. These changes in urinary bladder function were further associated with an increased referred somatic pelvic hypersensitivity. Thus, chronic urothelial NGF overexpression in transgenic mice leads to neuronal proliferation, focal increases in urinary bladder mast cells, increased urinary bladder reflex activity, and pelvic hypersensitivity. NGF-overexpressing mice may, therefore, provide a useful transgenic model for exploring the role of NGF in urinary bladder dysfunction.


Assuntos
Fator de Crescimento Neural/genética , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiologia , Urotélio/fisiologia , Animais , Peso Corporal , Cistite/patologia , Cistite/fisiopatologia , Expressão Gênica/fisiologia , Mastócitos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso/inervação , Músculo Liso/patologia , Músculo Liso/fisiologia , Fator de Crescimento Neural/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Reflexo Abdominal/fisiologia , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/fisiologia , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia , Bexiga Urinária/inervação , Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/patologia , Micção/fisiologia , Uroplaquina II , Urotélio/inervação , Urotélio/patologia
12.
Cancer Res ; 69(24): 9413-21, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19951992

RESUMO

Defects in pRb tumor suppressor pathway occur in approximately 50% of the deadly muscle-invasive urothelial carcinomas in humans and urothelial carcinoma is the most prevalent epithelial cancer in long-term survivors of hereditary retinoblastomas caused by loss-of-function RB1 mutations. Here, we show that conditional inactivation of both RB1 alleles in mouse urothelium failed to accelerate urothelial proliferation. Instead, it profoundly activated the p53 pathway, leading to extensive apoptosis, and selectively induced pRb family member p107. Thus, pRb loss triggered multiple fail-safe mechanisms whereby urothelial cells evade tumorigenesis. Additional loss of p53 in pRb-deficient urothelial cells removed these p53-dependent tumor barriers, resulting in late-onset hyperplasia, umbrella cell nuclear atypia, and rare-occurring low-grade, superficial papillary bladder tumors, without eliciting invasive carcinomas. Importantly, mice deficient in both pRb and p53, but not those deficient in either protein alone, were highly susceptible to subthreshold carcinogen exposure and developed invasive urothelial carcinomas that strongly resembled the human counterparts. The invasive lesions had a marked reduction of p107 but not p130 of the pRb family. Our data provide compelling evidence, indicating that urothelium, one of the slowest cycling epithelia, is remarkably resistant to transformation by pRb or p53 deficiency; that concurrent loss of these two tumor suppressors is necessary but insufficient to initiate urothelial tumorigenesis along the invasive pathway; that p107 may play a critical role in suppressing invasive urothelial tumor formation; and that replacing/restoring the function of pRb, p107, or p53 could be explored as a potential therapeutic strategy to block urothelial tumor progression.


Assuntos
Proteína do Retinoblastoma/deficiência , Proteína Supressora de Tumor p53/deficiência , Neoplasias da Bexiga Urinária/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Regulação para Baixo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Urotélio/metabolismo , Urotélio/patologia
13.
Kidney Int ; 75(11): 1153-1165, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19340092

RESUMO

Urothelium covers the inner surfaces of the renal pelvis, ureter, bladder, and prostatic urethra. Although morphologically similar, the urothelia in these anatomic locations differ in their embryonic origin and lineages of cellular differentiation, as reflected in their different uroplakin content, expandability during micturition, and susceptibility to chemical carcinogens. Previously thought to be an inert tissue forming a passive barrier between the urine and blood, urothelia have recently been shown to have a secretory activity that actively modifies urine composition. Urothelial cells express a number of ion channels, receptors, and ligands, enabling them to receive and send signals and communicate with adjoining cells and their broader environment. The urothelial surface bears specific receptors that not only allow uropathogenic E. coli to attach to and invade the bladder mucosa, but also provide a route by which the bacteria ascend through the ureters to the kidney to cause pyelonephritis. Genetic ablation of one or more uroplakin genes in mice causes severe retrograde vesicoureteral reflux, hydronephrosis, and renal failure, conditions that mirror certain human congenital diseases. Clearly, abnormalities of the lower urinary tract can impact the upper tract, and vice versa, through the urothelial connection. In this review, we highlight recent advances in the field of urothelial biology by focusing on the uroplakins, a group of urothelium-specific and differentiation-dependent integral membrane proteins. We discuss these proteins' biochemistry, structure, assembly, intracellular trafficking, and their emerging roles in urothelial biology, function, and pathological processes. We also call attention to important areas where greater investigative efforts are warranted.


Assuntos
Glicoproteínas de Membrana/fisiologia , Animais , Permeabilidade da Membrana Celular , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Camundongos , Multimerização Proteica , Transporte Proteico , Tetraspaninas , Uroplaquina Ia , Urotélio/química
14.
Neurourol Urodyn ; 28(8): 1028-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19267388

RESUMO

AIMS: The effects of deleting genes encoding uroplakins II (UPII) and III (UPIIIa) on mouse bladder physiology/dysfunction were studied in male and female wild type and knockout (KO) mice. METHODS: UPII, UPIIIa, and WT mice were catheterized using previously described techniques. Continuous cystometry was conducted in conscious, freely moving animals. Bladder strips were harvested after animal sacrifice and pharmacological studies and EFS were conducted in an organ chamber. Histological studies were also carried on with H&E staining to identify differences among the three mouse types. RESULTS: These studies have revealed numerous alterations, some of which were apparently gender-specific. Nonvoiding contractions were common in both UPII and UPIIIa KO mice, although more severe in the former. In particular, the increased bladder capacity, micturition pressure and demonstrable nonvoiding contractions observed in the male UPII KO's, were reminiscent of an obstruction-like syndrome accompanied by evidence of emerging bladder decompensation, as reflected by an increased residual volume. Pharmacological studies revealed a modest, gender-specific reduction in sensitivity of isolated detrusor strips from UPII KO female mice to carbachol-induced contractions. A similar reduction was observed in UPIIIa KO female mice. Histological investigation showed urothelial hyperplasia in both UPII KO and UPIIIa KO mice, although again, apparently more severe in the former. CONCLUSIONS: These results confirm and extend previous work to indicate that urothelial defects due to uroplakin deficiency are associated with significant alterations in bladder function and further highlight the importance of the urothelium to bladder physiology/dysfunction.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Bexiga Urinária/fisiopatologia , Animais , Feminino , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Uroplaquina II , Uroplaquina III
15.
J Urol ; 179(5): 2046-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18355864

RESUMO

PURPOSE: Previous study has shown that the absence of uroplakin II can cause urinary tract dysfunction, including vesicoureteral reflux and renal abnormalities, as well as micturition pattern changes. We developed a simple surrogate measure of bladder function using ultraviolet visualization of urinary voiding patterns in a uroplakin II knockout mouse animal model. MATERIALS AND METHODS: Three male and 3 female WT mice, and 3 male and 3 female uroplakin II knockout mice were evaluated by cystometric analysis and voiding pattern markings. Voiding pattern markings were graded by independent observers on a scale of 1 to 5 according to the degree of dispersion of voided urine. Statistical analysis was then used to correlate voiding dispersion grades with cystometric parameters in the same mice. RESULTS: The degree of dispersion of voiding pattern markings correlated with several measures of bladder function. Specifically the Pearson correlation coefficients for the observed voiding patterns highly correlated with baseline pressure, threshold pressure and intermicturition pressure measurements made during conscious cystometry in these mice (p <0.05). CONCLUSIONS: Ultraviolet visualization of urinary voiding patterns of mice correlated well with certain measures of standard cystometric evaluations. As such, this method provides a simple, noninvasive method of evaluating mouse bladder function. Implementation of this methodology, which can potentially be automated for high throughput analysis, can accelerate the development of novel therapy for certain important aspects of bladder disease/dysfunction.


Assuntos
Proteínas de Membrana/fisiologia , Bexiga Urinária/fisiologia , Micção/fisiologia , Urodinâmica , Animais , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Uroplaquina II
16.
Mol Cell Proteomics ; 7(2): 308-14, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17938404

RESUMO

We describe a new approach for the identification and characterization by mass spectrometry of proteins that have been electroblotted onto nitrocellulose. Using this method (Blotting and Removal of Nitrocellulose (BARN)), proteins can be analyzed either as intact proteins for molecular weight determination or as peptides generated by on-membrane proteolysis. Acetone is used to dissolve the nitrocellulose and to precipitate the adsorbed proteins/peptides, thus removing the nitrocellulose which can interfere with MS analysis. This method offers improved protein coverage, especially for membrane proteins, such as uroplakins, because the extraction step after in-gel digestion is avoided. Moreover, removal of nitrocellulose from the sample solution allows sample analysis by both MALDI- and (LC) ESI-based mass spectrometers. Finally, we demonstrate the utility of BARN for the direct identification of soluble and membrane proteins after Western blotting, obtaining comparable or better results than with in-gel digestion.


Assuntos
Western Blotting/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida , Colódio/isolamento & purificação , Glicoproteínas de Membrana/química , Proteínas de Membrana/química , Membranas Artificiais , Dados de Sequência Molecular , Peptídeos/química , Proteínas/química , Soroalbumina Bovina , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Uroplaquina II , Uroplaquina III
17.
J Transl Med ; 5: 49, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17935615

RESUMO

BACKGROUND: Treatment options for patients with recurrent superficial bladder cancer are limited, necessitating aggressive exploration of new treatment strategies that effectively prevent recurrence and progression to invasive disease. We assessed the effects of belinostat (previously PXD101), a novel histone deacetylase inhibitor, on a panel of human bladder cancer cell lines representing superficial and invasive disease, and on a transgenic mouse model of superficial bladder cancer. METHODS: Growth inhibition and cell cycle distribution effect of belinostat on 5637, T24, J82, and RT4 urothelial lines were assessed. Ha-ras transgenic mice with established superficial bladder cancer were randomized to receive either belinostat or vehicle alone, and assessed for bladder weight, hematuria, gene expression profiling, and immunohistochemistry (IHC). RESULTS: Belinostat had a significant linear dose-dependent growth inhibition on all cell lines (IC50 range of 1.0-10.0 microM). The 5637 cell line, which was derived from a superficial papillary tumor, was the most sensitive to treatment. Belinostat (100 mg/kg, intraperitoneal, 5 days each week for 3 weeks) treated mice had less bladder weight (p < 0.05), and no hematuria compared with 6/10 control mice that developed at least one episode. IHC of bladder tumors showed less cell proliferation and a higher expression of p21WAF1 in the belinostat-treated mice. Gene expression profile analysis revealed 56 genes significantly different in the treated group; these included the upregulation of p21WAF1, induction of core histone deacetylase (HDAC), and cell communication genes. CONCLUSION: Our data demonstrate that belinostat inhibits bladder cancer and supports the clinical evaluation of belinostat for the treatment of patients with superficial bladder cancer.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/patologia , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/efeitos adversos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hematúria/complicações , Humanos , Ácidos Hidroxâmicos/efeitos adversos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Sulfonamidas , Neoplasias da Bexiga Urinária/complicações , Neoplasias da Bexiga Urinária/genética
18.
Hum Pathol ; 38(11): 1703-13, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17707461

RESUMO

As the terminal differentiation products of human urothelium, uroplakins (UPs) would be expected to diminish during urothelial tumorigenesis. Surprisingly, recent studies found UPs to be retained even by well-advanced urothelial carcinomas, suggesting that the loss of UPs does not strictly parallel urothelial transformation. Little is known, however, about whether the status of UPs is associated with a particular pathologic parameter, the tumor's biological behavior, or patient outcome. Here we assessed UP expression by immunohistochemistry on tissue arrays from 285 patients with bladder urothelial carcinomas or nontumor conditions. UPs were expressed in all 9 normal urothelial specimens, 63 of 74 (85%) patients with non-muscle-invasive urothelial carcinomas on transurethral resection, 104 of 202 (51.5%) patients who underwent radical cystectomy for advanced urothelial carcinomas, and 33 of 50 (66%) lymph node metastases. Normally associated with urothelial apical surface, UPs were localized aberrantly in tumors, including microluminal, basal-laminal, cytoplasmic, or uniform patterns. In non-muscle-invasive diseases, there was no association between UP expression and disease recurrence, progression, or mortality. In contrast, in invasive diseases, absent UP expression was significantly associated with advanced pathologic stage, lymph node metastases, disease recurrence, and bladder cancer-specific mortality (P = .042, P = .035, P = .023, and P = .022, respectively) in univariate analyses. Furthermore, UP status was independent of key cell-cycle regulators, including p53, pRb, p27, and cyclin D1, thus excluding a functional link between these 2 groups of proteins. Our data demonstrate for the first time that persistent UP expression is associated with a favorable clinical outcome and that UPs may be used as adjunct markers for predicting the prognoses of patients with invasive and metastatic bladder carcinomas. Our results also suggest that UP-positive and -negative carcinomas have different clonal origins or may be derived from different cancer stem cells.


Assuntos
Glicoproteínas de Membrana/biossíntese , Neoplasias Urogenitais/patologia , Neoplasias Urogenitais/fisiopatologia , Urotélio/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Invasividade Neoplásica , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/fisiopatologia
19.
J Clin Invest ; 117(2): 314-25, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17256055

RESUMO

Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%-90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity--a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Genes ras , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/genética , Animais , Sequência de Bases , Senescência Celular , Primers do DNA/genética , Dosagem de Genes , Regulação da Expressão Gênica , Genes p16 , Genótipo , Humanos , Hiperplasia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia
20.
J Cell Sci ; 119(Pt 24): 5077-86, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17158912

RESUMO

The surface of the mammalian urinary bladder is covered by a crystalline, asymmetric unit membrane (AUM) structure that contains the four major uroplakins (UPs): Ia, Ib, II and IIIa. UPIa and UPIb belong to the family of tetraspanins. Although UPIa and UPIb are structurally conserved, only UPIb could exit from the endoplasmic reticulum (ER) and reach the cell surface when expressed alone in 293T cells. Modifications of the large extracellular loop of UPIb, such as mutation of the N-glycosylation site or the cysteines involved in the formation of three disulfide bridges, or exchanging the large luminal loop of UPIb with that of UPIa did not affect the ability of UPIb to reach the cell surface. However, modifications of any of the four transmembrane domains of UPIb led to ER retention, suggesting that the proper formation of helical bundles consisting of the tetraspanin transmembrane domains is a prerequisite for UPIb to exit from the ER. Results of sedimentation analysis suggested that aggregate formation is a mechanism for ER retention.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Células COS , Linhagem Celular , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA