Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 518, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851683

RESUMO

Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.


Assuntos
Brassica napus , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Poliploidia , Brassica napus/genética , Brassica napus/metabolismo , Genes Duplicados/genética , Genes de Plantas , Processamento Alternativo , Duplicação Gênica , Epigênese Genética
2.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054810

RESUMO

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


Assuntos
Brassica napus/genética , Diploide , Genoma de Planta , Família Multigênica , Poliploidia , Sequência de Bases , Cromossomos de Plantas/genética , Éxons/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Frações Subcelulares/metabolismo , Sintenia/genética
3.
New Phytol ; 232(2): 898-913, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265096

RESUMO

This study explores how allopolyploidization reshapes the biased expression and asymmetric epigenetic modification of homoeologous gene pairs, and examines the regulation types and epigenetic basis of expression bias. We analyzed the gene expression and four epigenetic modifications (DNA methylation, H3K4me3, H3K27me3 and H3K27ac) of 29 976 homoeologous gene pairs in resynthesized, natural allopolyploid Brassica napus and an in silico 'hybrid'. We comprehensively elucidated the biased gene expression, asymmetric epigenetic modifications and the generational transmission characteristics of these homoeologous gene pairs in B. napus. We analyzed cis/trans effects and the epigenetic basis of homoeolog expression bias. There was a significant positive correlation between two active histone modifications and biased gene expression. We revealed that parental legacy was the dominant principle in the remodeling of homoeolog expression bias and asymmetric epigenetic modifications in B. napus, and further clarified that this depends on whether there were differences in the expression/epigenetic modifications of gene pairs in parents/progenitors. The maternal genome was dominant in the homoeolog expression bias of resynthesized B. napus, and this phenomenon was attenuated in natural B. napus. Furthermore, cis rather than trans effects were dominant when epigenetic modifications potentially affected biased expression of gene pairs in B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Poliploidia
4.
Reprod Biol Endocrinol ; 19(1): 64, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902598

RESUMO

BACKGROUND: Fluorochloridone (FLC), a selective pyrrolidone herbicide, has been recognized as a potential endocrine disruptor and reported to induce male reproductive toxicity, but the underlying mechanism is unclear. The aim of this study was to investigate the mechanism of FLC-induced reproductive toxicity on male mice with particular emphasis on the role of autophagy in mice' TM4 Sertoli cells. METHODS: Adult C57BL/6 mice were divided into one control group (0.5% sodium carboxymethyl cellulose), and four FLC-treated groups (3,15,75,375 mg/kg). The animals (ten mice per group) received gavage for 28 days. After treatment, histological analysis, sperm parameters, the microstructure of autophagy and the expression of autophagy-associated proteins in testis were evaluated. Furthermore, to explore the autophagy mechanism, TM4 Sertoli cells were treated with FLC (0,40,80,160 µM) in vitro for 24 h. Cell activity and cytoskeletal changes were measured by MTT assay and F-actin immunofluorescence staining. The formation of autophagosome, accumulation of reactive oxygen species (ROS), expression of autophagy marker proteins (LC3, Beclin-1 and P62) and AKT-related pathway proteins (AKT, mTOR) were observed. The ROS scavenger N-acetylcysteine (NAC) and AKT agonist (SC79) were used to treat TM4 cells to observe the changes of AKT-mTOR pathway and autophagy. RESULTS: In vivo, it showed that FLC exposure caused testicular injuries, abnormality in epididymal sperm. Moreover, FLC increased the formation of autophagosomes, the accumulation of LC3II/LC3I, Beclin-1 and P62 protein, which is related to the degradation of autophagy. In vitro, FLC triggered TM4 cell autophagy by increasing the formation of autophagosomes and upregulating of LC3II/LC3I, Beclin-1 and P62 levels. In addition, FLC induced ROS production and inhibited the activities of AKT and mTOR kinases. The Inhibition of AKT/mTOR signaling pathways and the activation of autophagy induced by FLC could be efficiently reversed by pretreatment of NAC. Additionally, decreased autophagy and increased cell viability were observed in TM4 cells treated with SC79 and FLC, compared with FLC alone, indicating that FLC-induced autophagy may be pro-death. CONCLUSION: Taken together, our study provided the evidence that FLC promoted autophagy in TM4 Sertoli cells and that this process may involve ROS-mediated AKT/mTOR signaling pathways.


Assuntos
Autofagia/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Herbicidas/farmacologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Pirrolidinonas/farmacologia , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Acetatos/farmacologia , Acetilcisteína/farmacologia , Animais , Autofagia/fisiologia , Benzopiranos/farmacologia , Forma Celular , Herbicidas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirrolidinonas/toxicidade , Distribuição Aleatória , Espécies Reativas de Oxigênio , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/ultraestrutura
5.
Ecotoxicol Environ Saf ; 216: 112183, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33812209

RESUMO

Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity which underlying mechanism is still largely unknown. The present study was conducted to determine the effects of FLC on Sertoli cell and explore its mechanism by using normal mouse Sertoli (TM4) cell line. Our data indicate that FLC suppressed proliferation of TM4 cells in a dose- and time-dependent manner. Further studies confirmed that FLC induced apoptosis in TM4 cells, accompanied by reactive oxygen species (ROS) accumulation, intracellular calcium increase, opening of mitochondrial permeability transition pore, depolarization of the mitochondrial membrane potential (MMP) and decrease of adenosine triphosphate (ATP) level. Meanwhile, changes of B-cell lymphoma-2 (Bcl-2) family proteins expression, release of cytochrome c and the activation of caspase-9 and caspase-3 were also confirmed. These results indicate that FLC induces TM4 cells apoptosis through the mitochondrial apoptotic pathway. In addition, pretreatment with ROS scavenger N-acetyl-L-cysteine (NAC), could significantly alleviate FLC-induced TM4 cells apoptosis and MMP depolarization. In conclusion, our results suggested that FLC induced TM4 cells apoptosis and it was regulated by mitochondrial dysfunction and oxidative stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA