Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
ACS Nano ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151414

RESUMO

mRNA vaccines have been revolutionizing disease prevention and treatment. However, their further application is hindered by inflammatory side effects, primarily caused by delivery systems such as lipid nanoparticles (LNPs). In response to this issue, we prepared cationic lipids (mLPs) derived from mildronate, a small-molecule drug, and subsequently developed the LNP (mLNP-69) comprising a low dose of mLP. Compared with the LNP (sLNP) based on SM-102, a commercially available ionizable lipid, mLNP-69 ensures effective mRNA delivery while significantly reducing local inflammation. In preclinical prophylactic and therapeutic B16-OVA melanoma models, mLNP-69 demonstrated successful mRNA cancer vaccine delivery in vivo, effectively preventing tumor occurrence or impeding tumor progression. The results suggest that the cationic lipids derived from mildronate, which exhibit efficient delivery capabilities and minimal inflammatory side effects, hold great promise for clinical application.

2.
Int Immunopharmacol ; 140: 112817, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116499

RESUMO

BACKGROUND: Adenomyosis is a common gynecological disease, characterized by overgrowth of endometrial glands and stroma in the myometrium, however its exact pathophysiology still remains uncertain. Emerging evidence has demonstrated the elevated level of arginase 2 (ARG2) in endometriosis and adenomyosis. This study aimed to determine whether ARG2 involved in mitochondrial function and epithelial to mesenchymal transition (EMT) in adenomyosis and its potential underlying mechanisms. MATERIALS AND METHODS: RNA interference was used to inhibit ARG2 gene, and then Cell Counting Kit (CCK-8) assay and flow cytometery were performed to detect the cell proliferation capacity, cell cycle, and apoptosis progression, respectively. The mouse adenomyosis model was established and RT-PCR, Western blot analysis, mitochondrial membrane potential (Δψm) detection and mPTP opening evaluation were conducted. RESULTS: Silencing ARG2 effectively down-regulated its expression at the mRNA and protein levels in endometrial cells, leading to decreased enzyme activity and inhibition of cell viability. Additionally, ARG2 knockdown induced G0/G1 cell cycle arrest, promoted apoptosis, and modulated the expression of cell cycle- and apoptosis-related regulators. Notably, the interference with ARG2 induces apoptosis by mitochondrial dysfunction, ROS production, ATP depletion, decreasing the Bcl-2/Bax ratio, releasing Cytochrome c, and increasing the expression of Caspase-9/-3 and PARP. In vivo study in a mouse model of adenomyosis demonstrated also elevated levels of ARG2 and EMT markers, while siARG2 treatment reversed EMT and modulated inflammatory cytokines. Furthermore, ARG2 knockdown was found to modulate the NF-κB and Wnt/ß-catenin signaling pathways in mouse adenomyosis. CONCLUSION: Consequently, ARG2 silencing could induce apoptosis through a mitochondria-dependent pathway mediated by ROS, and G0/G1 cell cycle arrest via suppressing NF-κB and Wnt/ß-catenin signaling pathways in Ishikawa cells. These findings collectively suggest that ARG2 plays a crucial role in the pathogenesis of adenomyosis and may serve as a potential target for therapeutic intervention.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39171468

RESUMO

AIMS: The purpose of this study was to investigate the role of DGUOK in the pro-gression of colorectal cancer (CRC) and its impact on the sensitivity of CRC cells to 5-FU treatment. METHODS: We conducted bioinformatics analysis and qRT-PCR to evaluate DGUOK expression in CRC tissues/cells. Cell viability of CRC cells treated with 5-FU was assessed using CCK-8 and colony formation assays. Autophagy levels were determined through immunofluorescence assays and Western blot analysis. Additionally, the influence of p-p38 on autophagy was inves-tigated via Western blotting. A rescue assay was performed to confirm whether DGUOK/p38 affects 5-FU sensitivity in CRC cells through autophagy. RESULTS: Our findings indicate that DGUOK is upregulated in CRC tissues compared to normal tissues, correlating with increased cell proliferation and migration. Functionally, inhibition of DGUOK enhances autophagy, thereby decreasing the sensitivity of CRC cells to 5-FU. This ef-fect is partly mediated by DGUOK's impact on the mitogen-activated protein kinase (MAPK) pathway, specifically promoting the phosphorylation of p38 MAPK, a crucial regulator in au-tophagy pathways. CONCLUSION: These results suggest that DGUOK could serve as a novel marker for predicting the efficacy of 5-FU in CRC treatment.

5.
Adv Mater ; 36(27): e2402379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655900

RESUMO

Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.


Assuntos
Histidina , Hidrogéis , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Hidrogéis/química , Humanos , Histidina/química , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/diagnóstico , Linhagem Celular Tumoral , Separação Celular/métodos , Polímeros/química , Impressão Molecular/métodos
6.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594370

RESUMO

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Amplificação de Genes , Metotrexato , Tetra-Hidrofolato Desidrogenase , Humanos , Metotrexato/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Antimetabólitos Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos
7.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474562

RESUMO

Regulator of ribosome synthesis 1 (RRS1), a crucial regulatory factor in ribosome biogenesis, exerts a remarkable impact on the progression of breast cancer (BC). However, the exact mechanisms and pathways have not yet been fully elucidated. To investigate the impact of RRS1 on BC growth and metastasis, along with its underlying mechanisms. We discovered that RRS1 is overexpressed in BC tissues and cell lines. This study aims to regulate the level of RRS1 through lentiviral transfection technology to explore its potential function in BC cells. Knockdown of RRS1 resulted in the inhibition of cell proliferation, invasion, and migration, whereas overexpression had the opposite effects. We firstly identified the interaction between RRS1 and Glucose-Regulated Protein 78 (GRP78) using Co-immunoprecipitation (Co-IP) combined with mass spectrometry analysis, providing evidences of co-localization and positive regulation between RRS1 and GRP78. We observed that RRS1 inhibited the degradation of GRP78 through the ubiquitin-proteasome pathway, resulting in the stabilization of GRP78. In addition, our findings suggested that RRS1 promoted BC progression by activating the GRP78-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In conclusion, this newly discovered RRS1/GRP78 signaling axis provides a molecular and theoretical basis for further exploring the mechanisms of breast cancer invasion and metastasis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ribossomos/metabolismo , Proteínas de Ligação a RNA
8.
Cancer Biol Ther ; 25(1): 2323768, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38465861

RESUMO

Double minutes (DMs), extrachromosomal gene fragments found within certain tumors, have been noted to carry onco- and drug resistance genes contributing to tumor pathogenesis and progression. After screening for SUMO-related molecule expression within various tumor sample and cell line databases, we found that SUMO-conjugating enzyme UBC9 has been associated with genome instability and tumor cell DM counts, which was confirmed both in vitro and in vivo. Karyotyping determined DM counts post-UBC9 knockdown or SUMOylation inhibitor 2-D08, while RT-qPCR and Western blot were used to measure DM-carried gene expression in vitro. In vivo, fluorescence in situ hybridization (FISH) identified micronucleus (MN) expulsion. Western blot and immunofluorescence staining were then used to determine DNA damage extent, and a reporter plasmid system was constructed to detect changes in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Our research has shown that UBC9 inhibition is able to attenuate DM formation and lower DM-carried gene expression, in turn reducing tumor growth and malignant phenotype, via MN efflux of DMs and lowering NHEJ activity to increase DNA damage. These findings thus reveal a relationship between heightened UBC9 activity, increased DM counts, and tumor progression, providing a potential approach for targeted therapies, via UBC9 inhibition.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Humanos , Núcleo Celular , Hibridização in Situ Fluorescente
9.
Medicine (Baltimore) ; 103(9): e37357, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428890

RESUMO

OBJECTIVE: This study aimed to examine the changes in serum Low Density Lipoprotein Cholesterol (LDL-C) and Soluble Growth Stimulating Expressed Gene 2 Protein (sST2) among Heart Failure (HF) patients with varying ejection fractions and their clinical significance, providing a reference for the clinical assessment of HF severity. METHODS: A total of 238 HF patients treated in our hospital's cardiology department from September 2019 to December 2021 were selected; 68 patients hospitalized in the same period were selected as the control group. General information, LDL-C and echocardiographic results of admitted patients were collected. According to LVEF results and the latest European Society of Cardiology standards in 2021, HF patients were categorized into those with HFpEF (n = 95), HFmrEF (n = 60), and HFrEF (n = 83). Meanwhile, venous blood was collected to determine sST2 and NT-proBNP to compare and analyze the changes and clinical significance of sST2 and LDL-C across the groups. RESULTS: Compared to the control group, the HF group showed significant differences in age, gender, heart rate, smoking history, history of atrial fibrillation, history of diabetes, LVEDD, LVEF, sST2, and NT-proBNP levels (P < .05), but not in LDL-C levels. Significant differences (P < .05) were also found among the 3 HF groups in terms of age, gender, history of atrial fibrillation, LVEDD, LVEF, LDL-C, sST2, and NT-proBNP levels, with an increase in LVEDD, LDL-C, sST2, and NT-proBNP values as the ejection fraction decreased. ROC curve analysis indicated that the area under the curve (AUC) for sST2 in diagnosing HF was 0.915 (P < .05), with an optimal cutoff value of 23.71 ng/mL, a sensitivity of 76.5%, and a specificity of 95.6%; LDL-C was not a significant diagnostic marker for HF (P > .05). Coronary artery disease, NT-proBNP, and sST2 were identified as risk factors for HF. With each unit increase in coronary artery disease, the risk of HF increased by 36.3%; for NT-proBNP, the risk increased by 1.3% per unit; and for sST2, it increased by 18.3% per unit. CONCLUSION: As the ejection fraction decreases in HF patients, serum sST2 and LDL-C values progressively increase, which is clinically significant for predicting the severity of HF. sST2 is an independent risk factor for HF and can enhance the diagnostic accuracy for HF.


Assuntos
Fibrilação Atrial , Doença da Artéria Coronariana , Insuficiência Cardíaca , Humanos , Biomarcadores , Prognóstico , Volume Sistólico , Relevância Clínica , LDL-Colesterol , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos
10.
J Biophotonics ; 17(5): e202300493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38329194

RESUMO

IR780 iodide is a commercially available targeted near-infrared contrast agent for in vivo imaging and cancer photodynamic or photothermal therapy, whereas the accumulation, dynamics, and retention of IR780 in biological tissue, especially in tumor is still under-explored. Diffuse fluorescence tomography (DFT) can be used for localization and quantification of the three-dimensional distribution of NIR fluorophores. Herein, a homemade DFT imaging system combined with tumor-targeted IR780 was utilized for cancer imaging and pharmacokinetic evaluation. The aim of this study is to comprehensively assess the biochemical and pharmacokinetic characteristics of IR780 with the aid of DFT imaging. The optimal IR780 concentration (20 µg/mL) was achieved first. Subsequently, the good biocompatibility and cellar uptake of IR780 was demonstrated through the mouse acute toxic test and cell assay. In vivo, DFT imaging effectively identified various subcutaneous tumors and revealed the long-term retention of IR780 in tumors and rapid metabolism in the liver. Ex vivo imaging indicated IR780 was mainly concentrated in tumor and lung with significantly different from the distribution in other organs. DFT imaging allowed sensitive tumor detection and pharmacokinetic rates analysis. Simultaneously, the kinetics of IR780 in tumors and liver provided more valuable information for application and development of IR780.


Assuntos
Indóis , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia , Distribuição Tecidual , Imagem Óptica , Tomografia Óptica/métodos
13.
J Hazard Mater ; 466: 133537, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244450

RESUMO

Environmental estrogen exposure has increased dramatically over the past 50 years. In particular, prenatal exposure to estrogen causes many congenital diseases, among which reproductive system development disorders are extremely serious. In this study, the molecular mechanism of hypospadias and the therapeutic effect of genistein (GEN) were investigated through in vivo models prepared by Di-(2-ethylhexyl) phthalate (DEHP) exposure between 12 and 19 days of gestation. With increased DEHP concentrations, the incidence of hypospadias increased gradually. DEHP inhibited the key enzymes involved in steroid synthesis, resulting in decreasing testosterone synthesis. At the same time, DEHP increased reactive oxygen species (ROS) and produced inflammatory factors via NADPH oxidase-1 (NOX1) and NADPH oxidase-4 (NOX4) pathways. It also inhibited Steroid 5 α Reductase 2 (Srd5α2) and decreased dihydrotestosterone (DHT) synthesis. Additionally, DEHP inhibited the androgen receptor (AR), resulting in reduced DHT binding to the AR that ultimately retarded the development of the external reproductive system. GEN, a phytoestrogen, competes with DEHP for binding to estrogen receptor ß (ERß). This competition, along with GEN's antiestrogen and antioxidant properties, could potentially reverse impairments. The findings of this study provide valuable insights into the role of phytoestrogens in alleviating environmental estrogen-induced congenital diseases.


Assuntos
Dietilexilftalato , Hipospadia , Ácidos Ftálicos , Gravidez , Masculino , Humanos , Feminino , Ratos , Animais , Genisteína/farmacologia , Antioxidantes/farmacologia , Androgênios , Dietilexilftalato/toxicidade , Hipospadia/induzido quimicamente , Hipospadia/prevenção & controle , Estrogênios , NADPH Oxidases
14.
Eur J Pharmacol ; 966: 176340, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244759

RESUMO

Hinokitiol is a natural bioactive tropolone derivative isolated from Chamaecyparis obtusa and Thuja plicata, which exhibits promising potential in terms of antioxidant and anti-inflammatory properties and possesses potent iron-binding capacity. In this study, we aimed to investigate the potential role of hinokitiol in protecting against ethanol-induced gastric injury and elucidate the underlying mechanism. Our results demonstrated that hinokitiol effectively attenuated hemorrhagic gastric lesions, epithelial cell loss, and inflammatory response in mice with ethanol-induced gastric injury. Intriguingly, we found that ethanol exposure affects iron levels both in vivo and in vitro. Moreover, the disturbed iron homeostasis was involved in the development of ethanol-induced injury. Iron depletion was found to enhance defense against ethanol-induced damage, while iron repletion showed the opposite effect. To further explore the role of iron sequestration in the protective effects of hinokitiol, we synthesized methylhinokitiol, a compound that shields the iron binding capacity of hinokitiol with a methyl group. Interestingly, this compound significantly diminishes the protective effect against ethanol-induced injury. These findings collectively demonstrated that hinokitiol could potentially be used to prevent or improve gastric injury induced by ethanol through regulating cellular iron homeostasis.


Assuntos
Ferro , Tropolona , Tropolona/análogos & derivados , Camundongos , Animais , Tropolona/farmacologia , Etanol/efeitos adversos , Anti-Inflamatórios , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico
15.
Proteomics Clin Appl ; 18(3): e2300035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38196151

RESUMO

PURPOSE: This study was aimed to analyze serum amino acid metabolite profiles in frailty patients, gain a better understanding of the metabolic mechanisms in frailty, and assess the diagnostic value of metabolomics-based biomarkers of frailty. EXPERIMENTAL DESIGN: This study utilized the ultra-performance liquid chromatography tandem mass spectrometry to examine amino acids associated with frailty. Additionally, we employed multivariate statistical methods, metabolomic data analysis, receiver operating characteristic (ROC) curve analysis, and pathway enrichment analysis. RESULTS: Among the assayed amino acid metabolites, we identified biomarkers for frailty. ROC curve analysis for frailty diagnosis based on the modified Fried's frailty index showed that the areas under ROC curve of tryptophan, phenylalanine, aspartic acid, and combination were 0.775, 0.679, 0.667, and 0.807, respectively. ROC curve analysis for frailty diagnosis based on Frail Scale showed that the areas under ROC curve of cystine, phenylalanine, and combination of amino acids (cystine, L-Glutamine, citrulline, tyrosine, kynurenine, phenylalanine, glutamin acid) were 0.834, 0.708, and 0.854 respectively. CONCLUSION AND CLINICAL RELEVANCE: In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty. CLINICAL SIGNIFICANCE: Frailty is a clinical syndrome, as a consequence it is challenging to identify at early course of the disease, even based on the existing frailty scales. Early diagnosis and appropriate patient management are the key to improve the survival and limit disabilities in frailty patients. Proven by the extensive laboratory and clinical studies on frailty, comprehensive analysis of metabolic levels in frail patients, identification of biomarkers and study of pathogenic pathways of metabolites contribute to the prediction and early diagnosis of frailty. In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty.


Assuntos
Aminoácidos , Biomarcadores , Fragilidade , Metabolômica , Espectrometria de Massas em Tandem , Humanos , Aminoácidos/sangue , Biomarcadores/sangue , Metabolômica/métodos , Masculino , Fragilidade/sangue , Fragilidade/diagnóstico , Idoso , Feminino , Cromatografia Líquida de Alta Pressão , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Curva ROC , Espectrometria de Massa com Cromatografia Líquida
17.
Int J Oncol ; 63(6)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888748

RESUMO

Extrachromosomal DNAs (ecDNAs), also known as double minutes (DMs), can induce a fast increase in gene copy numbers and promote the development of cancer, including drug resistance. MutS homolog 3 (MSH3), a key protein in mismatch repair, has been indicated to participate in the regulation of DNA double­strand break (DSB) repair, which has been reported to be associated with the formation of ecDNAs. However, it remains unclear whether MSH3 can influence drug resistance via ecDNAs in cancer. In the present study, high MSH3 expression was observed in methotrexate (MTX)­resistant HT29 cells [DM­ and homogeneously staining region (HSR)­containing cells] compared with parental HT29 cells. Additionally, decreased amounts of ecDNAs, HSRs and amplified genes locating on ecDNAs and HSRs were detected following depletion of MSH3 and this could be reversed by overexpressing MSH3 in DM­containing cells. No corresponding changes were found in HSR­containing cells. The present study further verified the involvement of MSH3­regulated DNA DSB repair pathways in the formation of ecDNAs by detecting the expression of core proteins and pathway activity. Furthermore, expulsion of ecDNAs/HSRs was detected and increased frequencies of micronuclei/nuclear buds with dihydrofolate reductase (DHFR) signals were observed in MSH3­depleted DM­containing cells. Finally, changes in MSH3 expression could affect DHFR amplification­derived DHFR expression and cell sensitivity to MTX, suggesting that MSH3 may influence cancer drug resistance by altering the amount of ecDNAs. In conclusion, the present study revealed a novel mechanism involving MSH3 in the regulation of ecDNAs by DSB repair, which will have clinical value in the treatment of ecDNA­based drug resistance in cancer.


Assuntos
Neoplasias Colorretais , Metotrexato , Humanos , Metotrexato/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Aberrações Cromossômicas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo
18.
Biotechnol Biofuels Bioprod ; 16(1): 163, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904199

RESUMO

BACKGROUND: Grifola frondosa is a Basidiomycete fungus belonging to the family of Grifolaceae and the order of Polyporales. ß-Glucans are the main polymers in G. frondosa, playing a crucial role in the physiology and representing the healthy benefits for humans. The membrane-integrated ß-1, 3-glucan synthase (GLS) is responsible for glucan synthesis, cell wall assembly, differentiation and growth of the edible fungi. However, the structural/catalytic characteristics and mechanisms of ß-1, 3-glucan synthases in G. frondosa are still unknown due to their extremely complex structures with multi-transmembranes and large molecular masses. RESULTS: Herein, a ß-1, 3-glucan synthase (GFGLS2) was purified and identified from the cultured mycelia with a specific activity of 60.01 pmol min-1 µg-1 for the first time. The GFGLS2 showed a strict specificity to UDP-glucose with a Vmax value of 1.29 ± 0.04 µM min-1 at pH 7.0 and synthesized ß-1, 3-glucan with a maximum degree of polymerization (DP) of 62. Sequence Similarity Network (SSN) analysis revealed that GFGLS2 has a close relationship with others in Ganoderma sinense, Trametes coccinea, Polyporus brumalis, and Trametes pubescens. With the assistance of 3D structure modelling by AlphaFold 2, molecular docking and molecular dynamics simulations, the central hydrophilic domain (Class III) in GFGLS2 was the main active sites through binding the substrate UDP-glucose to 11 amino acid residues via hydrogen bonds, π-stacking and salt bridges. CONCLUSIONS: The biochemical, 3D structural characterization and potential catalytic mechanism of a membrane-bound ß-1, 3-glucan synthase GFGLS2 from cultured mycelia of G. frondosa were well investigated and would provide a reasonable full picture of ß-1, 3-glucan synthesis in fungi.

19.
Nano Lett ; 23(19): 9133-9142, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37767907

RESUMO

Immunotherapy has emerged as a triumph in the treatment of malignant cancers. Nevertheless, current immunotherapeutics are insufficient in addressing tumors characterized by tumor cells' inadequate antigenicity and the tumor microenvironment's low immunogenicity (TME). Herein, we developed a novel multifunctional nanoassembly termed FMMC through the self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor 1-methyl-tryptophan prodrug (FM), Ce6, and ionic manganese (Mn2+) via noncovalent interactions. The laser-ignited FMMC treatment could induce effective immunogenic cell death and activate the STING/MHC-I signaling pathway, thus deeply sculpting the tumor-intrinsic antigenicity to achieve dendritic cell (DC)-dependent and -independent T cell responses against tumors. Meanwhile, by inhibiting IDO-1, FMMC could lead to immunosuppressive TME reversion to an immunoactivated one. FMMC-based phototherapy led to the up-regulation of programmed death-ligand 1 (PD-L1), enhancing the sensitivity of tumors to anti-PD-1 therapy. Furthermore, the incorporation of Mn2+ into FMMC resulted in an augmented longitudinal relaxivity and enhanced the MRI for monitoring the growth of primary tumors and lung metastases. Collectively, the superior reprogramming performance of immunosuppressive tumor cells and TME, combined with excellent anticancer efficacy and MRI capability, made FMMC a promising immune nanosculptor for cancer theranostics.


Assuntos
Imunoterapia , Fototerapia , Linfócitos T , Transdução de Sinais , Células Dendríticas , Microambiente Tumoral , Linhagem Celular Tumoral
20.
Math Biosci Eng ; 20(8): 14222-14240, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37679133

RESUMO

Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.


Assuntos
Doença de Hirschsprung , Humanos , Doença de Hirschsprung/tratamento farmacológico , Doença de Hirschsprung/genética , Pós , Simulação de Acoplamento Molecular , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA