Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Agric Food Chem ; 72(20): 11341-11350, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713071

RESUMO

Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.


Assuntos
Proteínas de Insetos , Inseticidas , Neuropeptídeos , Peptidomiméticos , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Animais , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Neuropeptídeos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Peptidomiméticos/síntese química , Desenho de Fármacos , Hormônios Juvenis/química , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Baratas/efeitos dos fármacos , Baratas/química
2.
Neoplasia ; 50: 100977, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354688

RESUMO

BACKGROUND: The inconformity (IC) between pathological and imaging remissions after neoadjuvant immunotherapy in patients with NSCLC can affect the evaluation of curative effect of neoadjuvant therapy and the decision regarding the chance of surgery. MATERIALS AND METHODS: Patients who achieved disease control(CR/PR/SD) after neoadjuvant chemoimmunotherapy from a clinical trial (NCT04326153) and after neoadjuvant chemotherapy during the same period were enrolled in this study. All patients underwent radical resection and systematic mediastinal lymphadenectomy after neoadjuvant treatments. The pathological remission, immunohistochemistry (CD4, CD8, CD20, CD56, FoxP3, CD68, CD163, CD11b tumor-infiltrating lymphocytes, or macrophages), and single-source dual-energy computed tomography (ssDECT) scans were assessed. The IC between imaging remission by CT and pathological remission was investigated. The underlying cause of IC, the correlation between IC and DFS, and prognostic biomarkers were explored. RESULTS: After neoadjuvant immunotherapy, enhanced immune killing and reduced immunosuppressive performance were observed. 70 % of neoadjuvant chemoimmunotherapy patients were in high/medium IC level. Massive necrosis and repair around and inside the cancer nest were the main pathological changes observed 30-45 days post-treatment with PD1/PD-L1 antibody and were the main causes of IC between the pathology and imaging responses after neoadjuvant immunotherapy. High IC and preoperative CD8 expression (H score ≥ 3) indicate a high pathological response rate and prolonged DFS. Iodine material density ssDECT images showed that the iodine content in the lesion causes hyperattenuation in post-neoadjuvant lesion in PCR patient. CONCLUSIONS: Compared to chemotherapy and targeted therapy, the efficacy of neoadjuvant immunotherapy was underestimated based on the RECIST criteria due to the unique antitumor therapeutic mechanism. Preoperative CD8+ expression and ssDECT predict this IC and evaluate the residual tumor cells. This is of great significance for screening immune beneficiaries and making more accurate judgments about the timing of surgery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Iodo , Neoplasias Pulmonares , Humanos , Terapia Neoadjuvante , Microambiente Tumoral , Carcinoma Pulmonar de Células não Pequenas/patologia , Tomografia Computadorizada por Raios X , Imunoterapia , Neoplasias Pulmonares/patologia , Iodo/farmacologia , Iodo/uso terapêutico
3.
Small ; 20(27): e2310300, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299477

RESUMO

Glutathione (GSH) is the primary antioxidant in cells, and GSH consumption will break the redox balance in cells. Based on this, a method that uses high concentrations of GSH in the tumor microenvironment to trigger the redox reaction of Cu(II) to generate copper nanoprobes with fluorescence and tumor growth inhibition properties is proposed. The nanoprobe mainly exists in the form of Cu(I) and catalyzes the decomposition of hydrogen peroxide into hydroxyl radicals. At the same time, a simple and controllable carbon micro-nano electrode is used to construct a single-cell sensing platform, which enable the detection of glutathione content in single living cells after Cu(II) treatment, providing an excellent example for detecting single-cell biomolecules.


Assuntos
Cobre , Glutationa , Glutationa/metabolismo , Cobre/química , Humanos , Neoplasias/metabolismo , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Animais , Oxirredução , Espaço Intracelular/metabolismo
4.
Biosens Bioelectron ; 250: 116087, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295583

RESUMO

Dopamine (DA), a catecholamine neurotransmitter, is crucial in brain signal transmission. Monitoring cytoplasmic DA levels can reflect changes in metabolic factors and provide valuable information for researching the mechanisms involved in neurodegenerative diseases. However, the in-situ detection of intracellular DA is constrained by its low contents in small-sized single cells. In this work, we report that noble metal (Au, Pt)-modified carbon fiber micro-nanoelectrodes are capable of real-time detection of DA in single cells with excellent sensitivity, selectivity, and anti-contamination capabilities. Notably, noble metals can be modified on the electrode surface through electrochemical deposition to enhance the conductivity of the electrode and the oxidation current of DA by 50 %. The nanosensors can work stably and continuously in rat adrenal pheochromocytoma cells (PC12) to monitor changes in DA levels upon K+ stimulation. The functionalized carbon fibers based nanosensors will provide excellent prospects for DA analysis in the brains of living animals.


Assuntos
Técnicas Biossensoriais , Dopamina , Ratos , Animais , Dopamina/química , Fibra de Carbono/química , Técnicas Eletroquímicas , Eletrodos , Metais , Carbono/química
5.
Neurochem Res ; 49(2): 477-491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935859

RESUMO

The current first-line antidepressants have the drawback of slow onset, which greatly affects the treatment of depression. Crocetin, one of the main active ingredients in saffron (Crocus sativus L.), has been demonstrated to have antidepressant activities, but whether it has a rapid antidepressant effect remains unclear. This study aimed to investigate the onset, duration, and mechanisms of the rapid antidepressant activity of crocetin (20, 40 and 80 mg/kg, intraperitoneal injection) in male mice subjected to chronic restraint stress (CRS). The results of behavioral tests showed that crocetin exerted rapid antidepressant-like effect in mice with depression-like phenotypes, including rapid normalization of depressive-like behaviors within 3 h, and the effects could be maintained for 2 days. Hematoxylin-eosin (HE) and Nissl staining showed that crocetin ameliorated hippocampal neuroinflammation and nerve injuries in mice with depression-like phenotypes. The levels of inflammatory factors, corticosterone and pro brain-derived neurotrophic factor in crocetin-administrated mice serum were significantly reduced compared with those in the CRS group, as well as the levels of inflammatory factors in hippocampus. What's more, Western blot analyses showed that, compared to CRS-induced mice, the relative levels of mitogen-activated kinase phosphatase 1 and toll-like receptor 4 were significantly reduced after the administration of crocetin, and the relative expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP-response element binding protein, phosphorylated phosphoinositide 3 kinase (p-PI3K)/PI3K, phosphorylated protein kinase B (p-AKT)/AKT, phosphorylated glycogen synthase kinase 3ß (p-GSK3ß)/GSK3ß, phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR were markedly upregulated. In conclusion, crocetin exerted rapid antidepressant effects via suppressing the expression of inflammatory cytokines and the apoptosis of neuronal cells through PI3K/AKT signaling pathways. The rapid antidepressant effect of crocetin (40 mg/kg) could be maintained for at least 2 days after single treatment.


Assuntos
Carotenoides , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Vitamina A/análogos & derivados , Camundongos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Hipocampo/metabolismo , Mamíferos/metabolismo
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(8): 877-883, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37668038

RESUMO

Since December 2019, coronavirus disease 2019 (COVID-19) has been rapidly spreading worldwide and affecting the physical and mental health of the general population. It may have even more serious potential harm to children with autism spectrum disorder (ASD). This paper provides a literature review on the psychological and behavioral problems experienced by children with ASD during the COVID-19 epidemic, as well as the factors influencing these issues. The findings of this review can serve as a basis for clinical research on ASD children.


Assuntos
Transtorno do Espectro Autista , COVID-19 , Epidemias , Comportamento Problema , Humanos , Criança
7.
Anal Chem ; 95(37): 14101-14110, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37674256

RESUMO

Intracellular dynamic assembly of DNA structures may be beneficial for the development of multifunctional nanoplatforms for the regulation of cell behaviors, providing new strategies for disease diagnosis and intervention. Herein, we propose the dynamic assembly of DNA coacervates in living cells triggered by miRNA-21 and K+, which can be used for both miRNA imaging and mitochondrial intervention. The rationale is that miRNA-21 can trigger the hybridization chain reaction to generate G-quadruplex precursors, and K+ can mediate the assembly of G-quadruplex-based coacervates, allowing the colorimetric detection of miRNA-21 ranging from 10 pM to 10 µM. Moreover, the as-formed DNA coacervates can specifically target mitochondria in MCF-7 breast cancer cells using the MCF-7 cell membrane as delivery carriers, which further act as an anionic shielding to inhibit communication between mitochondria and environments, with a significant inhibitory effect on ATP production and cellular migration behaviors. This work provides an ideal multifunctional nanoplatform for rationally interfering with cellular metabolism and migration behaviors through the dynamic assembly of DNA coacervates mediated by endogenous molecules, which has a large number of potential applications in the biomedical field, especially theranostics for cancer metastasis.


Assuntos
DNA , MicroRNAs , Replicação do DNA , Diagnóstico por Imagem , MicroRNAs/genética , Mitocôndrias
8.
Anal Chim Acta ; 1267: 341322, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257980

RESUMO

As the molecular characteristics of extracellular vesicles (EVs) are closely related to the occurrence and progression of cancer, the detection of tumor-derived EVs provides a promising non-invasive tool for the early diagnosis and treatment of cancer. However, it would be difficult for most of the existing methods to avoid false positives because the obtained result declares the amounts of proteins, but cannot accurately reflect the protein sources, including EV proteins and interfering proteins, in the actual samples. In this manuscript, a robust, accurate, and sensitive fluorescent strategy for profiling EV proteins is developed by using the combination of specific proteins as markers (Co-marker). Our strategy relies on the Co-marker recognition-activated cascade bHCR amplification, which forms numerous G-quadruplex structures that are integrated with fluorescent dyes for signal transduction. Notably, the detection accuracy can be improved owing to the effective avoidance of false positives from interfering proteins or single protein markers. Moreover, by using the double-positive protein recognition mode, unpurified detection can be achieved that avoids time-consuming EVs purification procedures. With its capacities of accuracy, portability, sensitivity, high throughput, and non-purification, the developed strategy might provide a practical tool for EV identification and the related early diagnosis and treatment of cancer.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/química , Proteínas/análise , Biomarcadores , Humanos , Linhagem Celular Tumoral , Técnicas Biossensoriais , Estudos de Viabilidade
9.
Int J Cardiol ; 371: 472-479, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115441

RESUMO

BACKGROUND: Prognosis of breast cancer patients has been improved along with the progress in cancer therapies. However, cancer therapeutics-related cardiac dysfunction (CTRCD) has been an emerging issue. For early detection of CTRCD, we examined whether native T1 mapping and global longitudinal strain (GLS) using cardiac magnetic resonance (CMR) and biomarkers analysis are useful. METHODS: We prospectively enrolled 83 consecutive chemotherapy-naïve female patients with breast cancer (mean age, 56 ± 13 yrs.) between 2017 and 2020. CTRCD was defined based on echocardiography as left ventricular ejection fraction (LVEF) below 53% at any follow-up period with LVEF>10% points decrease from baseline after chemotherapy. To evaluate cardiac function, CMR (at baseline and 6 months), 12­lead ECG, echocardiography, and biomarkers (at baseline and every 3 months) were evaluated. RESULTS: A total of 164 CMRs were performed in 83 patients. LVEF and GLS were significantly decreased after chemotherapy (LVEF, from 71.2 ± 4.4 to 67.6 ± 5.8%; GLS, from -27.9 ± 3.9 to -24.7 ± 3.5%, respectively, both P < 0.01). Native T1 value also significantly elevated after chemotherapy (from 1283 ± 36 to 1308 ± 39 msec, P < 0.01). Among the 83 patients, 7 (8.4%) developed CTRCD. Of note, native T1 value before chemotherapy was significantly higher in patients with CTRCD than in those without it (1352 ± 29 vs. 1278 ± 30 msec, P < 0.01). The multivariable logistic regression analysis revealed that native T1 value was an independent predictive factor for the development of CTRCD [OR 2.33; 95%CI 1.15-4.75, P = 0.02]. CONCLUSIONS: These results indicate that CMR is useful to detect chemotherapy-related myocardial damage and predict for the development of CTRCD in breast cancer patients.


Assuntos
Antineoplásicos , Neoplasias da Mama , Cardiopatias , Disfunção Ventricular Esquerda , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Volume Sistólico , Função Ventricular Esquerda , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Detecção Precoce de Câncer , Antineoplásicos/uso terapêutico , Fatores de Risco , Espectroscopia de Ressonância Magnética , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem , Valor Preditivo dos Testes
10.
BMC Surg ; 22(1): 374, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324095

RESUMO

BACKGROUND: While the most suitable approach for treating persistent/recurrent papillary thyroid carcinoma (PTC) remains controversial, reoperation may be considered an effective method. The efficacy of reoperation in patients with locoregional persistent/recurrent PTC, especially those with unsatisfactory radioactive iodine (RAI) ablation results, is still uncertain. This study aimed to clarify the clinical management strategies for locoregional persistent/recurrent PTC and to explore factors that may affect long-term patient outcomes after reoperation. METHODS: In total, 124 patients who initially underwent thyroidectomy and variable extents of RAI therapy and finally received reoperation for locoregionally persistent/recurrent PTC were included. The parameters associated with recurrence-free survival (RFS) were analysed using a Cox proportional hazards model. RESULTS: Overall, 124 patients presented with structural disease after initial therapy and underwent secondary surgical resection, of whom 32 patients developed further structural disease during follow-up after reoperation. At the time of reoperation, metastatic lymph nodes with extranodal extension (P = 0.023) and high unstimulated thyroglobulin (unstim-Tg) levels after reoperation (post-reop) (P = 0.001) were independent prognostic factors for RFS. Neither RAI avidity nor the frequency and dose of RAI therapies before reoperation affected RFS. CONCLUSIONS: Reoperation is an ideal clinical treatment strategy for structural locoregional persistent/recurrent PTC, and repeated empirical RAI therapies performed prior to reoperation may not contribute to the long-term outcomes of persistent/recurrent PTC patients. Metastatic lymph nodes with extranodal extension and post-reop unstim-Tg > 10.1 ng/mL may predict a poor prognosis.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/cirurgia , Radioisótopos do Iodo/uso terapêutico , Reoperação , Carcinoma Papilar/cirurgia , Carcinoma Papilar/patologia , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Extensão Extranodal , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Tireoidectomia/efeitos adversos , Doença Crônica
11.
Mol Ther Nucleic Acids ; 29: 823-835, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36159595

RESUMO

Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).

12.
Diabetologia ; 65(12): 2157-2171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35920844

RESUMO

AIMS/HYPOTHESIS: CD40 expressed in Müller cells is a central driver of diabetic retinopathy. CD40 causes phospholipase Cγ1 (PLCγ1)-dependent ATP release in Müller cells followed by purinergic receptor (P2X7)-dependent production of proinflammatory cytokines in myeloid cells. In the diabetic retina, CD40 and P2X7 upregulate a broad range of inflammatory molecules that promote development of diabetic retinopathy. The molecular event downstream of CD40 that activates the PLCγ1-ATP-P2X7-proinflammatory cytokine cascade and promotes development of diabetic retinopathy is unknown. We hypothesise that disruption of the CD40-driven molecular events that trigger this cascade prevents/treats diabetic retinopathy in mice. METHODS: B6 and transgenic mice with Müller cell-restricted expression of wild-type (WT) CD40 or CD40 with mutations in TNF receptor-associated factor (TRAF) binding sites were made diabetic using streptozotocin. Leucostasis was assessed using FITC-conjugated concanavalin A. Histopathology was examined in the retinal vasculature. Expression of inflammatory molecules and phospho-Tyr783 PLCγ1 (p-PLCγ1) were assessed using real-time PCR, immunoblot and/or immunohistochemistry. Release of ATP and cytokines were measured by ATP bioluminescence and ELISA, respectively. RESULTS: Human Müller cells with CD40 ΔT2,3 (lacks TRAF2,3 binding sites) were unable to phosphorylate PLCγ1 and release ATP in response to CD40 ligation, and could not induce TNF-α/IL-1ß secretion in bystander myeloid cells. CD40-TRAF signalling acted via Src to induce PLCγ1 phosphorylation. Diabetic mice in which WT CD40 in Müller cells was replaced by CD40 ΔT2,3 failed to exhibit phosphorylation of PLCγ1 in these cells and upregulate P2X7 and TNF-α in microglia/macrophages. P2x7 (also known as P2rx7), Tnf-α (also known as Tnf), Il-1ß (also known as Il1b), Nos2, Icam-1 (also known as Icam1) and Ccl2 mRNA were not increased in these mice and the mice did not develop retinal leucostasis and capillary degeneration. Diabetic B6 mice treated intravitreally with a cell-permeable peptide that disrupts CD40-TRAF2,3 signalling did not exhibit either upregulation of P2X7 and inflammatory molecules in the retina or leucostasis. CONCLUSIONS/INTERPRETATION: CD40-TRAF2,3 signalling activated the CD40-PLCγ1-ATP-P2X7-proinflammatory cytokine pathway. Src functioned as a link between CD40-TRAF2,3 and PLCγ1. Replacing WT CD40 with CD40 ΔT2,3 impaired activation of PLCγ1 in Müller cells, upregulation of P2X7 in microglia/macrophages, upregulation of a broad range of inflammatory molecules in the diabetic retina and the development of diabetic retinopathy. Administration of a peptide that disrupts CD40-TRAF2,3 signalling reduced retinal expression of inflammatory molecules and reduced leucostasis in diabetic mice, supporting the therapeutic potential of pharmacological inhibition of CD40-TRAF2,3 in diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Camundongos , Humanos , Animais , Células Ependimogliais/metabolismo , Retinopatia Diabética/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Antígenos CD40 , Retina/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Peptídeos , Trifosfato de Adenosina/metabolismo , Mutação
13.
Stem Cell Res Ther ; 13(1): 316, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842683

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with oxidative stress and affects the survival and homing of transplanted mesenchymal stem cells (MSCs) as well as cytokine secretion by the MSCs, thereby altering their therapeutic potential. In this study, we preconditioned the MSCs with prostaglandin E1 (PGE1) and performed in vitro and in vivo cell experiments to evaluate the therapeutic effects of MSCs in rats with PAH. METHODS: We studied the relationship between PGE1 and vascular endothelial growth factor (VEGF) secretion, B-cell lymphoma 2 (Bcl-2) expression, and C-X-C chemokine receptor 4 (CXCR4) expression in MSCs and MSC apoptosis as well as migration through the hypoxia-inducible factor (HIF) pathway in vitro. The experimental rats were randomly divided into five groups: (I) control group, (II) monocrotaline (MCT) group, (III) MCT + non-preconditioned (Non-PC) MSC group, (IV) MCT + PGE1-preconditioned (PGE1-PC) MSC group, and (V) MCT+PGE1+YC-1-PCMSC group. We studied methane dicarboxylic aldehyde (MDA) levels, MSC homing to rat lungs, mean pulmonary artery pressure, pulmonary artery systolic pressure, right ventricular hypertrophy index, wall thickness index (%WT), and relative wall area index (%WA) of rat pulmonary arterioles. RESULTS: Preconditioning with PGE1 increased the protein levels of HIF-1 alpha (HIF-1α) in MSCs, which can reduce MSC apoptosis and increase the protein levels of CXCR4, MSC migration, and vascular endothelial growth factor secretion. Upon injection with PGE1-PCMSCs, the pulmonary artery systolic pressure, mean pulmonary artery pressure, right ventricular hypertrophy index, %WT, and %WA decreased in rats with PAH. PGE1-PCMSCs exhibited better therapeutic effects than non-PCMSCs. Interestingly, lificiguat (YC-1), an inhibitor of the HIF pathway, blocked the effects of PGE1 preconditioning. CONCLUSIONS: Our findings indicate that PGE1 modulates the properties of MSCs by regulating the HIF pathway, providing insights into the mechanism by which PGE1 preconditioning can be used to improve the therapeutic potential of MSCs in PAH.


Assuntos
Hipertensão Pulmonar , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Hipertensão Arterial Pulmonar , Alprostadil/metabolismo , Animais , Apoptose , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/patologia , Células-Tronco Mesenquimais/metabolismo , Monocrotalina , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Invest Radiol ; 57(10): 639-654, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703463

RESUMO

OBJECTIVES: Preclinical assessments were performed according to the US Food and Drug Administration guidelines to determine the physicochemical properties, pharmacokinetics, clearance, safety, and tumor-specific magnetic resonance (MR) imaging of MT218, a peptidic gadolinium-based MR imaging agent targeting to extradomain B fibronectin for MR molecular imaging of aggressive tumors. MATERIALS AND METHODS: Relaxivity, chelation stability, binding affinity, safety-related target profiling, and effects on CYP450 enzymes and transporters were evaluated in vitro. Magnetic resonance imaging was performed with rats bearing prostate cancer xenografts, immunocompetent mice bearing murine pancreatic cancer allografts, and mice bearing lung cancer xenografts at different doses of MT218. Pharmacological effects on cardiovascular, respiratory, and central nervous systems were determined in rats and conscious beagle dogs. Pharmacokinetics were tested in rats and dogs. Biodistribution and excretion were studied in rats. Single and repeated dosing toxicity was evaluated in rats and dogs. In vitro and in vivo genotoxicity, in vitro hemolysis, and anaphylactic reactivity were also performed. RESULTS: At 1.4 T, the r1 and r2 relaxivities of MT218 were 5.43 and 7.40 mM -1 s -1 in pure water, 6.58 and 8.87 mM -1 s -1 in phosphate-buffered saline, and 6.54 and 8.70 mM -1 s -1 in aqueous solution of human serum albumin, respectively. The binding affinity of MT218 to extradomain B fragment is 3.45 µM. MT218 exhibited no dissociation of the Gd(III) chelates under physiological conditions. The peptide degradation half-life ( t1/2 ) of MT218 was 1.63, 5.85, and 2.63 hours in rat, dog, and human plasma, respectively. It had little effect on CYP450 enzymes and transporters. MT218 produced up to 7-fold increase of contrast-to-noise ratios in the extradomain B fibronectin-rich tumors with a dose of 0.04 mmol/kg for at least 30 minutes. MT218 had little pharmacological effect on central nervous, cardiovascular, or respiratory systems. MT218 had a mean plasma elimination half-life ( t1/2 ) of 0.31 and 0.89 hours in rats and dogs at 0.1 mmol/kg, respectively. No detectable Gd deposition was observed in the brain at 6 hours postinjection of MT218 at 0.1 mmol/kg in rats. MT218 was not mutagenic and had no mortality or morbidity in the rats or dogs up to 1.39 and 0.70 mmol/kg/d, respectively. The no observed adverse effect level of MT218 in Sprague-Dawley rats was 1.39 mmol/kg for single dosing and 0.46 mmol/kg/d for repeated dosing. The no observed adverse effect level in dogs was 0.07 mmol/kg/d. MT218 exhibited no genotoxicity, hemolysis, and anaphylactic reactivity. CONCLUSION: The preclinical assessments showed that the targeted contrast agent MT218 has high r1 and r2 relaxivities, satisfactory physicochemical properties, pharmacokinetic, and safety profiles and produces effective tumor enhancement in multiple cancer types in rats and mice at reduced doses.


Assuntos
Meios de Contraste , Neoplasias da Próstata , Animais , Quelantes , Meios de Contraste/farmacocinética , Cães , Fibronectinas , Hemólise , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
15.
J Thorac Dis ; 14(1): 76-89, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35242370

RESUMO

BACKGROUND: Although the incident rate is low, sternal dislocation and dehiscence due to unstable sternal fixation after cardiovascular surgery could cause potentially lethal complications. Thus, to enforce the stability of closed sternum, the sternal pins have been utilized at surgeon's discretion. However, there is no randomized clinical trial to test whether these pins are effective to stabilize a sternum. Hence, this study aimed to examine the clinical efficacy of bioabsorbable poly-L-lactide (PLLA) sternal pins in reinforcing sternal stability and preventing instability of the sternum after full sternotomy. METHODS: We conducted a single institutional, prospective, randomized, single-blinded clinical study involving 100 patients who underwent an initial cardiovascular surgery via sternotomy. Patients were randomly allocated into two groups: with (group P) and without (group N) PLLA sternal pins, at 1:1 ratio from November 2013 to April 2016. Sternal deviation and stability were assessed with postoperative computed tomography (CT) at two postures to put shear stress on the sternum. Additionally, information on patient demographic indices was obtained prospectively, and patient's pain intensity was assessed with numerical rating scoring system during rehabilitation. Furthermore, propensity score matching was performed for further comparative sub-analysis. RESULTS: Ninety-one patients (43 in group P and 48 in group N) were analyzed using the intention-to-treat method. Group N had a significantly higher proportion of males (P=0.015) and ischemic disease as a primary diagnosis (P=0.040) than group P. Postoperative CT showed that the degree of sternal deviation and stability were comparable between the groups. Similarly, the numerical rating score of pain during rehabilitation showed no difference between the groups. Even after adjusting for patient characteristics using propensity score matching method, no significant differences in sternal gaps, stability, and numerical rating score of pain were observed. Of note, no material-related adverse event such as wound infection was found. CONCLUSIONS: We could not identify the efficacy of the sternal pin in enforcing sternal stability based on CT measurements with mild shear stress on sternum after cardiovascular surgery. Nevertheless, our results with no adverse events might encourage further investigations with a more specific cohort who is susceptible to infection but requires an additional sternal fixation. TRIAL REGISTRATION: This study was registered in University Hospital Medical Information Network Clinical Trial Registry (UMIN000017357).

16.
Anal Sci ; 38(5): 749-757, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35298794

RESUMO

Acibenzolar-S-methyl (ASM) is the most commercially successful biological antibacterial agent used for crop through systemic acquired resistance (SAR). In this study, a reproducible and accurate procedure, based on the spectrophotometric/microplate reader analysis, has been developed to detect ASM in tobacco leaves. This method involves oxidation of methyl mercaptan by the Ellman's reagent 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) to form the yellow derivative 5'-thio-2-nitrobenzoic acid (TNB2-), measurable at 412 nm. Methyl mercaptan can be produced by either the ASM transesterification with methanol or the SA-binding protein 2 (SABP2)-catalyzed ASM hydrolysis. The proportions of methanol, reaction time, temperature, the concentrations of EDTA and DTNB were optimized in a 96-well plate. The calibration curve of ASM was linear over the range of 25.2-315 µg g-1. The results of the intra- and inter-day accuracy and precision data were within the FDA acceptance criteria. With ASM as substrate, the turnover number of SABP2 was determined, with the kcat value of 31.1 min-1 using the Michaelis-Menten equation. In tobacco plants treated with 100 µM ASM, it was decreased as time elapsed in treated tobacco, reaching negligible values 72 h after treatment. The optimized method was applied for the determination of ASM transesterification with methanol and the kinetic data determination of SABP2-catalyzed ASM hydrolysis.


Assuntos
Metanol , Nicotiana , Proteínas de Transporte/metabolismo , Catálise , Ácido Ditionitrobenzoico/metabolismo , Hidrólise , Compostos de Sulfidrila/análise , Tiadiazóis
17.
Anal Chem ; 93(36): 12383-12390, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34449197

RESUMO

Circulating extracellular vesicles (EVs) are promising biomarkers for the early diagnosis and prognosis of cancer in a non-invasive manner. However, the rapid and accurate identification of EVs in complex biological samples is technically challenging, which is attributed to the requirement of extensive sample purification and unsatisfactory detection accuracy due to the disturbance of interfering proteins. Herein, a simultaneous binding of double-positive EV membrane protein-based recognition mode (DRM) is proposed. By the combination of DRM-mediated toehold activation and G-quadruplex DNAZyme-catalyzed etching of Au@Ag nanorods (Au@Ag NRs), we have developed an accurate, non-purified, low-cost, and visual strategy for EV identification. The synchronous binding of double-positive proteins on EV membranes is validated by confocal laser scanning microscopy analysis. This approach exhibits excellent specificity and sensitivity toward EVs ranging from 1.0 × 105 to 1.0 × 109 particles/mL with a detection limit of 6.31 × 104 particles/mL. Moreover, we have successfully realized non-purified EV quantification in complex biological media. In addition, target-initiated catalyzed hairpin assembly (CHA) is integrated with G-quadruplex DNAZyme-catalyzed color variation of Au@Ag NRs; thus, low-background EV detection can be achieved by the naked eye. Furthermore, our strategy is easy to adapt to high-throughput formats by using an automatic microplate reader, which could be expected to meet the requirements for high-throughput detection of clinical samples. With its capacities of rapidness, portability, affordability, high throughput, non-purification, and visual detection, this strategy could provide a practical tool for accurate identification of EVs and early diagnosis of cancer.


Assuntos
DNA Catalítico , Vesículas Extracelulares , Quadruplex G , Nanotubos , Neoplasias , Humanos
18.
Mikrochim Acta ; 188(8): 255, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264390

RESUMO

As an extremely important post-transcriptional regulator, miRNAs are involved in a variety of crucial biological processes, and the abnormal expressions of miRNAs are closely related to a variety of diseases. In this work, for the first time, we designed a nucleic acid lock nanostructure for specific detection of miRNA-21, which changes the self-structure to "active conformation" by binding the target, in order to generate triggers to initiate the subsequent reaction. Emphatically, this flexible nucleic acid lock is capable of self-cleaving without the assistance of external component, overcoming the disadvantages of the complex design and requiring protease assistance in traditional nanostructure. Moreover, the combination of DNAzyme and RCA technology not only greatly improves the efficiency of signal amplification but also enables primer generation to simultaneous cascade RCA amplification. Additionally, the electrochemical detection technology based on silver nanoclusters overcomes the shortcomings of traditional detection methods such as low sensitivity and complex operation. The detection limit achieved was 9.3 aM with a wide dynamic response ranging from 10 aM to 100 pM (at the DPV peak of - 0.5 V), which is comparable to most of the reported studies. Therefore, our work provided an ultra-sensitive way for the detection of miRNAs using nanostructures and revealed an effective means for disease theranostics and cancer diagnosis. In this work, for the first time, we designed a nucleic acid lock nanostructure based on its self-structural transformation for the specific detection of miRNA. And the combination of DNAzyme and cascade RCA reaction greatly improved the signal amplification efficiency.


Assuntos
DNA Catalítico/química , DNA/química , MicroRNAs/química , Sequência de Bases , Técnicas Biossensoriais , Técnicas Eletroquímicas , Células HeLa , Humanos , Limite de Detecção , Células MCF-7 , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico , Prata/química
19.
Gland Surg ; 10(2): 629-644, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708546

RESUMO

BACKGROUND: The techniques of DNA microarray and bioinformatic analysis have exhibited efficiency in identifying dysregulated gene expression in human cancers. In this study, we used integrated bioinformatics analysis to improve our understanding of the pathogenesis of papillary thyroid cancer (PTC). METHODS: In this study, we integrated four Gene Expression Omnibus (GEO) datasets, GSE33630, GSE35570, GSE60542 and GSE29265, including 136 normal samples and 157 PTC specimens. The contents of the four datasets are based on GPL570, an Affymetrix Human Genome U133 Plus 2.0 array. Gene ontology (GO) analysis was used to identify characteristic the biological attributes of differentially expressed genes (DEGs) between PTC and normal samples. GO annotation was performed on the DEGs obtained, and the process relied on the DAVID online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) approach enrichment analyses were adopted to obtain the basic functions of the DEGs. The KOBAS online analysis database was used to complete DEG KEGG pathway comparison and analysis. The search tool (STRING) database was mainly used to search for interacting genes and complete the construction of protein-protein interaction (PPI) networks. RESULTS: Five hundred-ninety DEGs were consistently expressed in the four datasets; 327 of them were upregulated, while 263 were downregulated. Ten DEGs, including five upregulated (ENTPD1, THRSP, KLK10, ADAMTS9, MIR31HG) and five downregulated (SCARA5, EPHB1, CHRDL1, LOC440934, FOXP2) genes, were randomly selected for q-PCR in our own tissue samples to validate the integrated data. The most highly enriched GO terms were extracellular exosome (GO:0070062), cell adhesion (GO:0070062), positive regulation of gene expression (GO:0010628), and extracellular matrix (ECM) organization (GO:0030198). KEGG pathway analysis was performed, and it was found that abnormally expressed genes effectively participated in pathways such as tyrosine metabolism, complement and coagulation cascades, cell adhesion molecules (CAMs), transcriptional misregulation and ECM-receptor interaction pathways. CONCLUSIONS: Five hundred-ninety DEGs were identified in PTC by integrated microarray analysis. The GO and KEGG analyses presented here suggest that the DEGs were enriched in extracellular exosome, tyrosine metabolism, CAMs, complement and coagulation cascades, transcriptional misregulation and ECM-receptor interaction pathways. Functional studies of PTC should focus on these pathways.

20.
Chem Commun (Camb) ; 57(3): 339-342, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315029

RESUMO

The first facile, efficient, atom-economical and regioselective palladium-catalyzed direct C-P cross-coupling of unprotected allenic alcohols with H-phosphonates for the one-pot synthesis of structurally diverse multisubstituted 2-phosphinoyl-1,3-butadienes was developed. This strategy would enrich the allene chemistry and afford new scaffolds to construct complex molecular skeletons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA