Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116435, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714084

RESUMO

The compound known as Sodium arsenite (NaAsO2), which is a prevalent type of inorganic arsenic found in the environment, has been strongly associated with liver fibrosis (LF), a key characteristic of nonalcoholic fatty liver disease (NAFLD), which has been demonstrated in our previous study. Our previous research has shown that exposure to NaAsO2 triggers the activation of hepatic stellate cells (HSCs), a crucial event in the development of LF. However, the molecular mechanism is still unknown. N6-methyladenosine (m6A) modification is the most crucial post-transcriptional modification in liver disease. Nevertheless, the precise function of m6A alteration in triggering HSCs and initiating LF caused by NaAsO2 remains unknown. Here, we found that NaAsO2 induced LF and HSCs activation through TGF-ß/Smad signaling, which could be reversed by TGF-ß1 knockdown. Furthermore, NaAsO2 treatment enhanced the m6A modification level both in vivo and in vitro. Significantly, NaAsO2 promoted the specific interaction of METTL14 and IGF2BP2 with TGF-ß1 and enhanced the TGF-ß1 mRNA stability. Notably, NaAsO2-induced TGF-ß/Smad pathway and HSC-t6 cells activation might be avoided by limiting METTL14/IGF2BP2-mediated m6A modification. Our findings showed that the NaAsO2-induced activation of HSCs and LF is made possible by the METTL14/IGF2BP2-mediated m6A methylation of TGF-ß1, which may open up new therapeutic options for LF brought on by environmental hazards.


Assuntos
Adenosina , Arsenitos , Células Estreladas do Fígado , Cirrose Hepática , Compostos de Sódio , Fator de Crescimento Transformador beta1 , Arsenitos/toxicidade , Células Estreladas do Fígado/efeitos dos fármacos , Compostos de Sódio/toxicidade , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Animais , Fator de Crescimento Transformador beta1/metabolismo , Adenosina/análogos & derivados , Metiltransferases/genética , Metiltransferases/metabolismo , Masculino , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Humanos , Camundongos Endogâmicos C57BL
2.
Laryngoscope Investig Otolaryngol ; 8(6): 1522-1531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130245

RESUMO

Background: Hematological parameters have been associated with prognosis in patients with nasopharyngeal carcinoma (NPC). The present meta-analysis investigated the utility of neutrophil-lymphocyte ratio (NLR) in the prognosis of patients with NPC. Methods: Multiple electronic databases, including PubMed, Embase, the Cochrane Library, and the Web of Science, were systematically searched for studies assessing the association between NLR and NPC from 2011 to 2021. The primary outcomes were overall survival (OS) and progression-free survival (PFS). Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were utilized to estimate effect size. Use of a fixed effect or random effect model was based on heterogeneity stability was tested by sensitivity analysis, and the risk of bias was assessed by funnel plots. Random effects models were used based on the actual results. Because the NLR grouping criteria for the included studies differed, subgroup analyses were performed. Results: A search of the electronic databases identified 14 studies, encompassing 6693 patients, that met the selection criteria. NLR higher than the cutoff value was significantly associated with poorer OS [HR 1.760, 95% CI 1.470-2.120, p <0.00001] and PFS [HR 1.850, 95% CI 1.430-2.390, p = .006]. Sensitivity analysis showed that the results of the meta-analysis were relatively stable, and funnel plots were used to exclude the risk of bias. Conclusions: Elevated pretreatment NLR in peripheral blood is predictive of poorer OS and PFS in patients with NPC. NLR is an easily measured and important prognostic factor in patients with NPC.

3.
Sci Total Environ ; 892: 164472, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257617

RESUMO

Patulin (PAT) is a mycotoxin that is commonly present throughout the ecosystem where fungi grow and mainly contaminates food, soil, and water. PAT was found to be cardiotoxic in previous studies. However, the detailed mechanism has not been fully elucidated. The present study aimed to explore the role and underlying mechanism of ferroptosis in PAT-induced cardiac injury. Here, we confirmed in vivo and in vitro that ferroptosis is involved in PAT-induced myocardial inflammation and fibrosis. Mice exposed to PAT (1 and 2 mg/kg body weight/day for 14 days) exhibited myocardial inflammation and fibrosis along with disrupted iron homeostasis, elevated lipid peroxidation, depletion of glutathione peroxidase 4, and abnormal mitochondrial morphology. When primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cells were exposed to PAT, ferroptosis was initiated in a dose-dependent manner, and this process could be significantly attenuated by ferrostatin-1. Mechanistically, we found that nuclear receptor coactivator (NCOA) 4, a master regulator of ferritinophagy, bound to and degraded ferritin in response to PAT treatment, thereby releasing large amounts of ferrous iron and further leading to sideroflexin (SFXN) 1-dependent mitochondrial iron overload. Conversely, knockdown of NCOA4 or SFXN1 with small interfering RNAs could effectively ameliorate ferroptotic cell death, cellular or mitochondrial iron overload and lipid peroxides accumulation. Furthermore, myocardial inflammation and fibrosis in PAT-exposed mice was alleviated by the mitochondrial iron chelator deferiprone. Overall, our findings underscore that ferritinophagy activation and SFXN1-dependent mitochondrial iron overload play critical roles in PAT-induced myocardial ferroptosis and consequent cardiotoxicity.


Assuntos
Sobrecarga de Ferro , Patulina , Camundongos , Ratos , Animais , Patulina/toxicidade , Ecossistema , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Fibrose , Inflamação/induzido quimicamente
4.
Ecotoxicol Environ Saf ; 253: 114662, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801541

RESUMO

In general populations, insulin resistance (IR) is related to perfluorooctane sulfonate (PFOS), a persistent organic pollutant. However, the underlying mechanism remains unclear. In this study, PFOS induced mitochondrial iron accumulation in the liver of mice and human hepatocytes L-O2. In the PFOS-treated L-O2 cells, mitochondrial iron overload preceded the occurrence of IR, and pharmacological inhibition of mitochondrial iron relieved PFOS-caused IR. Both transferrin receptor 2 (TFR2) and ATP synthase ß subunit (ATP5B) were redistributed from the plasma membrane to mitochondria with PFOS treatment. Inhibiting the translocation of TFR2 to mitochondria reversed PFOS-induced mitochondrial iron overload and IR. In the PFOS-treated cells, ATP5B interacted with TFR2. Stabilizing ATP5B on the plasma membrane or knockdown of ATP5B disturbed the translocation of TFR2. PFOS inhibited the activity of plasma-membrane ATP synthase (ectopic ATP synthase, e-ATPS), and activating e-ATPS prevented the translocation of ATP5B and TFR2. Consistently, PFOS induced ATP5B/TFR2 interaction and redistribution of ATP5B and TFR2 to mitochondria in the liver of mice. Thus, our results indicated that mitochondrial iron overload induced by collaborative translocation of ATP5B and TFR2 was an up-stream and initiating event for PFOS-related hepatic IR, providing novel understandings of the biological function of e-ATPS, the regulatory mechanism for mitochondrial iron and the mechanism underlying PFOS toxicity.


Assuntos
Resistência à Insulina , Sobrecarga de Ferro , Humanos , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
5.
Mol Med ; 28(1): 130, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335331

RESUMO

Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body's sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatias , Humanos , Obesidade , Doença Crônica , Hepatopatias/metabolismo , Ferro/metabolismo
6.
Food Chem Toxicol ; 164: 113046, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447293

RESUMO

Exposure to Di (2-ethylhexyl) phthalate (DEHP) has been associated with toxic effects of the reproductive system. However, the exact mechanism remains to be elucidated. In this study we explored the testicular toxicity induced by DEHP, and the probable molecular mechanism in the process. In vivo, the results demonstrated that DEHP affected testosterone levels and blood-testosterone barrier (BTB) integrity and caused ferroptosis. We further demonstrated that DEHP up-regulated the expression of p38α, p-p38α, p53, p-p53, SAT1, ALOX15. This view has also been confirmed in TM4 cells. After pre-treatment with fer-1 or si-MAPK14, the expression of either p53, p-p53, SAT1 and ALOX15 up-regulated by MEHP was inhibited in vitro. Interestingly, p38α can prevent the accumulation of lipid ROS, and the production of lipid ROS in turn promoted the expression of p38α, thus forming a feedback loop during the ferroptosis. In this process, a vicious cycle consisting of p38α, p53, SAT1, ALOX15, lipid ROS was involved. This study provides new mechanistic insights into DEHP-induced toxicity of the reproductive system.


Assuntos
Dietilexilftalato , Ferroptose , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Humanos , Lipídeos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Testículo/metabolismo , Testosterona/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Food Chem Toxicol ; 157: 112540, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500008

RESUMO

Perfluorooctane sulfonate (PFOS) is one kind of persistent organic pollutants. In previous study, we found that PFOS induced autophagy-dependent lysosomal membrane permeabilization (LMP) in hepatocytes, and siRNA against lysosomal permease spinster 1 (SPNS1) relieved PFOS-induced LMP. However, whether and how SPNS1 functioned as the link between autophagy and LMP was still not defined. In this study, we constructed a stable cell line expressing high levels of SPNS1. We found that SPNS1 interacted specifically with α-tubulin of tyrosinated isotype by pull-down assay. After treatment with PFOS, the level of tyrosinated α-tubulin was autophagy-dependently decreased. SPNS1-tyrosinated α-tubulin interaction was disrupted subsequently, which led to LMP eventually. We also found that stable high-expression of SPNS1 in hepatocytes accelerated lysosomal acidification, and deteriorated PFOS-induced LMP. This study pointed out that SPNS1-tyrosinated α-tubulin interaction mediated the cross-talk between autophagy and LMP induced by PFOS, shedding new light on the mechanism of PFOS hepatotoxicity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/efeitos dos fármacos , Fluorocarbonos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Tubulina (Proteína)/metabolismo , Western Blotting , Células Hep G2/efeitos dos fármacos , Humanos , Espectrometria de Massas , Membranas/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Tirosina/metabolismo
8.
Toxicol Mech Methods ; 31(9): 680-689, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34238121

RESUMO

Acrolein, a known toxin in tobacco smoke, has been demonstrated to be associated with inflammatory cardiovascular diseases, such as atherosclerosis. However, the definite mechanism of acrolein-induced inflammation remains unclear. Here, we report that acrolein induces reactive oxygen species (ROS) production in EAhy926 cells. Additionally, acrolein induces EAhy926 cells' inflammatory response and pyroptosis by activating NOD-like receptor protein 3 (NLRP3) inflammasome. Also, acrolein-induced cytotoxicity could be attenuated by N-acetyl-L-cysteine (NAC). Furthermore, acrolein upregulates the level of autophagy which can be reversed by NAC. Notably, the present study also indicates that autophagy inhibited by inhibitor 3-methyladenine (3MA) and siAtg7 exacerbate acrolein-induced NLRP3 inflammasome activation and pyroptosis. In summary, acrolein induced cytotoxicity by ROS-mediated NLRP3 inflammasome activation, and ROS upregulates the level of autophagy to inhibit the NLRP3 inflammasome excessive activation, indicating the bidirectional role of ROS in acrolein-induced cellular inflammation. Our results may provide novel mechanistic insights into acrolein-induced cardiovascular toxicity.


Assuntos
Acroleína , Inflamassomos , Acroleína/toxicidade , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Espécies Reativas de Oxigênio
9.
Food Chem Toxicol ; 147: 111867, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217525

RESUMO

Patulin (PAT), a kind of mycotoxin, is produced by many common fungi in fruit and vegetable-based products. It has been shown to cause hepatotoxicity. However, the possible mechanisms are not completely elucidated. The present study aimed to characterize the role of autophagic-inflammasomal pathway on pyroptosis induced by PAT. In mouse livers, PAT induced pyroptosis, and increased inflammation through the activation of NLRP3 inflammasome. In liver cells, we noticed that PAT induced pyroptotic cell death, which was confirmed by the activation of GSDMD, caspase-1, the release of LDH, and the result of PI/Hoechst assay. In addition, PAT-induced pyroptosis was dependent upon the activation of NLRP3 inflammasome and the release of cathepsin B. Cells had less expression of caspase-1 and IL-1ß protein levels after treated by NLRP3 inhibitor MCC950 or cathepsin B inhibitor CA-074Me. The expression of GSDMD and IL-1ß protein levels were also decrease after treated by caspase-1 inhibitor Ac-YVAD-cmk. Moreover, autophagy inhibitor 3-methyladenine (3-MA) attenuated PAT-induced increase in cytoplasmic cathepsin B expression, and subsequent LDH release, the activation of NLRP3 inflamosomes, pyroptotic cell death, and inflammation. These findings suggested that PAT-induced pyroptosis maybe through autophagy-cathepsin B-inflammasomal pathway in the liver. These results provide new mechanistic insights into PAT-induced hepatotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inflamassomos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Patulina/toxicidade , Piroptose/efeitos dos fármacos , Animais , Caspase 1/genética , Caspase 1/metabolismo , Catepsina B/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
Biomed Res Int ; 2020: 7269150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733951

RESUMO

Liver fibrosis is an intrinsic repair process of chronic injury with excessive deposition of extracellular matrix. As an early stage of various liver diseases, liver fibrosis is a reversible pathological process. Therefore, if not being controlled in time, liver fibrosis will evolve into cirrhosis, liver failure, and liver cancer. It has been demonstrated that hepatic stellate cells (HSCs) play a crucial role in the formation of liver fibrosis. In particular, the activation of HSCs is a key step for liver fibrosis. Recent researches have suggested that autophagy and inflammasome have biological effect on HSC activation. Herein, we review current studies about the impact of autophagy and NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome on liver fibrosis and the underlying mechanisms.


Assuntos
Autofagia , Inflamassomos/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Células Estreladas do Fígado/patologia , Humanos , Estresse Oxidativo
11.
J Hazard Mater ; 384: 121390, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31735470

RESUMO

Chronic arsenic exposure is a significantly risk factor for pancreatic dysfunction and type 2 diabetes (T2D). Ferroptosis is a newly identified iron-dependent form of oxidative cell death that relies on lipid peroxidation. Previous data have indicated that ferroptosis is involved in various diseases, including cancers, neurodegenerative diseases, and T2D. However, the concrete effect and mechanism of ferroptosis on pancreatic dysfunction triggered by arsenic remains unknown. In this study, we verified that ferroptosis occurred in animal models of arsenic-induced pancreatic dysfunction through assessing proferroptotic markers and morphological changes in mitochondria. In vitro, arsenic caused execution of ferroptosis in a dose-dependent manner, which could be significantly reduced by ferrostatin-1. Additionally, arsenic damaged mitochondria manifested as diminishing of mitochondrial membrane potential, reduced cytochrome c level and production of mitochondrial reactive oxygen species (MtROS) in MIN6 cells. Using the Mito-TEMPO, we found the autophagy level and subsequent ferroptotic cell death induced by arsenic were both alleviated. With autophagy inhibitor chloroquine, we further revealed that ferritin regulated ferroptosis through the MtROS-autophagy pathway. Collectively, NaAsO2-induced ferroptotic cell death is relied on the MtROS-dependent autophagy by regulating the iron homeostasis. Ferroptosis is involved in pancreatic dysfunction triggered by arsenic, and arsenic-induced ferroptosis involves MtROS, autophagy, ferritin.


Assuntos
Arsenitos/toxicidade , Autofagia/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Insulina/sangue , Ferro/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Pâncreas/metabolismo , Pâncreas/patologia , Ratos Sprague-Dawley
12.
Toxicology ; 428: 152304, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586597

RESUMO

Zearalenone (ZEA), one of the mycotoxins widely found in food and feed, can stimulate an inflammatory reaction. In the present study, we demonstrated that ZEA induced the activation of NLRP3 inflammasome even pyroptotic cell death in rat Insulinoma Cell Line (INS-1). Meanwhile, according to the results of western blot and TEM, the level of autophagy was elevated by ZEA, which protected against the activation of NLRP3 inflammasome and inflammatory response caused by ZEA. Furthermore, we indicated that ZEA-induced NF-κB p65 activation contributed to the activation of the NLRP3 inflammasome, inflammatory response, and pyroptosis in INS-1 cells, which were indicated by western blot and immunofluorescence, and the activation of NF-κB p65 induced by ZEA was autophagy-dependent. This study demonstrates that ZEA induces NLRP3-dependent pyroptosis via activation of NF-κB modulated by autophagy in INS-1 cells.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Zearalenona/toxicidade , Animais , Linhagem Celular Tumoral , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Chem Biol Interact ; 311: 108795, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31419397

RESUMO

Citreoviridin (CIT), a mycotoxin and ATP synthase inhibitor, is regarded as one of aetiology factors of cardiac beriberi and Keshan disease. Thiamine (VB1) and selenium (Se) improve the recovery of these two diseases respectively. The underlying mechanisms of cardiotoxic effect of CIT and cardioprotective effect of VB1 and Se have not been fully elucidated. In this study, we found that ectopic ATP synthase was more sensitive to CIT treatment than mitochondrial ATP synthase in H9c2 cardiomyocytes. CIT inhibited the transcriptional activity of peroxisome proliferator activated receptor gamma (PPAR-γ) in mice hearts and H9c2 cells. PPAR-γ agonist attenuated the inhibitory effect of CIT on mechanistic target of rapamycin complex 2 (mTORC2) and stimulatory effect of CIT on autophagy in cardiomyocytes. CIT induced apoptosis through lysosomal-mitochondrial axis in cardiomyocytes. PPAR-γ agonist and autophagy inhibitor alleviated CIT-induced apoptosis and accelerated cardiac biomarker. VB1 and Se accelerated the basal transcriptional activity of PPAR-γ in mice hearts and H9c2 cells. Furthermore, VB1 and Se reversed the effect of CIT on PPAR-γ, autophagy and apoptosis. Our findings defined PPAR-γ-mTORC2-autophagy pathway as the key link between CIT cardiotoxicity and cardioprotective effect of VB1 and Se. The present study would shed new light on the pathogenesis of cardiomyopathy and the cardioprotective mechanism of micronutrients.


Assuntos
Apoptose/efeitos dos fármacos , Aurovertinas/farmacologia , Autofagia/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Selênio/farmacologia , Tiamina/farmacologia , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Miocárdio/metabolismo , Miocárdio/patologia , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína X Associada a bcl-2/metabolismo
14.
Free Radic Biol Med ; 141: 393-407, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279968

RESUMO

Exposure to fine particular matter (≤2.5 µM, PM2.5) contributes to increased risk of obesity and type 2 diabetes. Hydroxytyrosol (HT), a simple polyphenol found in virgin olive oil, is considered to be beneficial for cardiovascular and metabolic disorders. The current study determined whether HT could improve PM2.5-induced adiposity and insulin resistance (IR), and explored the underlying mechanisms. Fifteen adult female C57BL/6j mice on a chow diet were randomly divided into three groups receiving (1) sterile PBS, (2) PM2.5 suspended in sterile PBS (1 mg/mL) and (3) PM2.5+HT (50 mg/kg/day). PM2.5/PBS exposure was administered by oropharynx instillation every other day and HT supplementation was achieved by gavage every day. Four-week PM2.5 exposure did not affect body weight, but significantly increased visceral fat mass. The abdominal adiposity coincided with adipocyte hypertrophy and proliferation in visceral white adipose tissue (WAT), as well as decreased metabolic activity in brown adipose tissue and subcutaneous WAT. PM2.5 enhanced the oxidative stress by diminishing antioxidant enzyme activities in liver and serum, whereas contents of 4-hydroxynonenal (4-HNE), malondialdehyde (MDA) levels in liver and serum were elevated. These changes were accompanied by macrophage infiltration and activation of NF-κB pathway in the liver. Moreover, PM2.5 exposure led to glucose intolerance and insulin insensitivity, impaired hepatic glycogenesis, and decreased insulin-stimulated Akt phosphorylation in peripheral tissues. Importantly, HT treatment prevented PM2.5-induced visceral adipogenesis, oxidative stress, hepatic inflammation and NF-κB activation, systemic and peripheral IR. In vitro, after HepG2 cells were incubated with PM2.5 (0, 5, 25, 50, 100 and 200 µg/mL), reduced glutathione depletion and 4-HNE, 8-hydroxy-2'-deoxyguanosine, MDA increment in a dose-dependent manner were observed; likewise, insulin-stimulated glucose uptake decreased in a dose-dependent manner. Further, with antioxidant NAC and NF-κB inhibitor PDTC, we confirmed that HT attenuated PM2.5-induced IR through restraining NF-κB activation evoked by oxidative stress. In addition, HT could expand gut microbiota richness, reduce pathogenic bacteria and accommodate the microbial architecture in PM2.5-exposed mice, which were correlated with parameters of adiposity, oxidative stress and glycometabolism. HT could effectively correct imbalanced oxidative stress triggered by PM2.5, in turn ameliorated NF-κB pathway and insulin signaling. Gut microbiota may mediate the actions of HT.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Material Particulado/toxicidade , Álcool Feniletílico/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/patologia , Humanos , Resistência à Insulina/genética , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malondialdeído/sangue , Camundongos , Obesidade/induzido quimicamente , Obesidade/patologia , Azeite de Oliva/química , Estresse Oxidativo/efeitos dos fármacos , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia
15.
Toxicology ; 425: 152238, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226464

RESUMO

The cardiotoxicity of doxorubicin (DOX) limits its clinical use in the treatment of a variety of solid tumors and malignant hematologic disease. However, the mechanism by which it causes cardiotoxicity is not fully understood. Apoptosis has been regarded as one of mechanisms underlying the cardiotoxic effects of DOX. In our study, we found that treatment of human umbilical vein endothelial cells (HUVECs) with DOX induced autophagy and apoptosis in a dose- and time-dependent manner. Treatment with DOX induced autophagy at earlier time (3 h), then lysosomal membrane permeabilization (LMP) altered after treatment for 12 h which followed by the release of cathepsin D (CTSD). Lysosome-associated membrane proteins-1 and -2 (LAMP1 and LAMP2) were decreased in DOX-treated cells. Additionally, DOX induced the collapse of mitochondrial transmembrane potential, reduction of translocase of the outer mitochondrial membrane-20 (TOM-20), and release of cytochrome c. Furthermore, autophagy inhibitor 3-MA relieved DOX-induced apoptosis as assessed by the expression of cleaved caspase-3, cleaved caspase-9 and TUNEL assay. CTSD inhibitor, pepstatin A, upregulated TOM-20 and suppressed the mitochondria release of cytochrome c as well as apoptosis under DOX stress. Pyrroloquinoline quinine (PQQ), a new B vitamin, ameliorated aforementioned phenomenon. In conclusion, our results suggested that DOX-induced apoptosis was autophagy-dependent via lysosomal-mitochondrial axis. PQQ had an ability to protect cell from autophagy-dependent apoptosis induced by DOX via lysosomal-mitochondrial axis to some extent. This study provided new mechanistic insight toward understanding the pathogenesis of DOX-induced cardiotoxicity and the protection effect of PQQ.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Doxorrubicina/toxicidade , Endotélio Vascular/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Cofator PQQ/farmacologia , Western Blotting , Catepsina D/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/antagonistas & inibidores , Endotélio Vascular/citologia , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Marcação In Situ das Extremidades Cortadas , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
16.
Food Chem Toxicol ; 125: 392-402, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30660605

RESUMO

Low-level inorganic arsenic (iAs) in drinking water is a risk factor for ß cells dysfunction. Taurine (Tau) is a kind of semi-essential ß amino acid, and beneficial for ß cell function. However, the effects of Tau on arsenic trioxide (As2O3) induced ß cells dysfunction and related mechanisms are still uncertain. Here, we found that Tau relieved As2O3-induced endoplasmic reticulum (ER) stress, inflammation and pyroptosis in rat pancreas. In INS-1 cells, with NOD-like receptor family pyrin domain-containing 3 (NLRP3) inhibitor pretreatment, As2O3-induced activation of pyroptosis was decreased; with tumor necrosis factor-α (TNF-α) inhibitor pretreatment, As2O3-induced activation of NLRP3 inflammasome and pyroptosis were decreased; further, with the inositol-requiring enzyme 1 alpha (IRE1α) inhibitor, As2O3-induced induction of TNF-α was decreased. Tau markedly protected As2O3-induced ß cells dysfunction by reducing the phosphorylation of IRE1α, production of TNF-α, activation of NLRP3 inflammasome and pyroptosis. Our results revealed that ER stress dependent inflammation and pyroptosis are critical pathogenic components of As2O3-induced ß cell dysfunction. Moreover, TNF-α was a critical signaling node that linked As2O3-induced ER stress and pyroptosis. Tau was an effective supplement against As2O3-induced ß cells dysfunction through the pathway as mentioned above.


Assuntos
Trióxido de Arsênio/efeitos adversos , Células Secretoras de Insulina/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Taurina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Feminino , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Complexos Multienzimáticos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
17.
J Cell Physiol ; 234(4): 5143-5152, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362509

RESUMO

Inorganic arsenic (iAs) is reportedly associated with the increased incidence of type 2 diabetes in the population. Here, we found that iAs exposure significantly decreased the expression of glycolytic genes and glycogen content and increased gluconeogenesis gene levels in C57/BL6J mice. The expression of peroxisome proliferator-activated receptor γ (PPARγ), and mechanistic target of rapamycin complex 2 (mTORC2) were decreased in the livers of iAs-treated mice. Furthermore, in iAs-treated HepG2 cells, we found that PPARγ agonist rosiglitazone (RGS) increased the expression of mTORC2, inhibited autophagy, and improved glucose metabolism. mTORC2 agonist palmitic acid inhibited autophagy and improved glucose metabolism as well as the autophagosome formation inhibitor 3-methyladenine. Taurine, a natural compound, reversed impaired glucose metabolism and decreased expression of PPARγ and mTORC2 induced by iAs in mice liver and HepG2 cells. These data indicated that taurine administration could ameliorate iAs-induced insulin resistance through activating PPARγ-mTORC2 signalling and subsequently inhibiting hepatic autophagy.


Assuntos
Trióxido de Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Resistência à Insulina , Fígado/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , PPAR gama/metabolismo , Taurina/farmacologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
18.
Biomed Pharmacother ; 109: 815-822, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551535

RESUMO

Arsenic was an established carcinogen and toxicant, occurring in drinking water and food. Arsenic was increasingly being blamed as a risk factor for diabetes mellitus. Recent studies have found that arsenic could induce the generation of reactive oxygen species (ROS) and mitochondria were the major targets of ROS. Damage mitochondria could be removed by mitophagy and mitophagy played a defensive role against cellular apoptosis. To investigate whether the arsenic could induce the injury in mitochondria, we treated Wistar rat offsprings and INS-1 cells with As2O3 and sodium arsenite, respectively. Our results showed that arsenic induced the generation of ROS in both rat offsprings' pancreas and INS-1 cells. The generation of ROS induced by arsenic could inhibit the expression of PPARγ. PPARγ is a major impact on mitochondrial function. The inhibition of PPARγ induced the reduction of PINK1 signaling and the upregulation of Bax. PINK1 signaling was one of the classical pathways of mitophagy. The inhibition of mitophagy induced the activation of apoptosis both in rat offsprings' pancreas and INS-1 cells. After treated with Rosiglitazone (RGS, PPARγ receptor agonist), PPARγ was rescued, the expression of PINK1 significantly increasing and the apoptosis was restrained. We used Taurine (Tau) as the protective agent both in rat offsprings' pancreas and INS-1 cells, after treated with Tau, the production of ROS was decreased significantly and the downgrade of PPARγ was rescued.


Assuntos
Arsênio/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/lesões , Taurina/farmacologia , Animais , Células Cultivadas , Feminino , Células Secretoras de Insulina/metabolismo , Masculino , Pâncreas/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
19.
J Agric Food Chem ; 66(46): 12376-12384, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30392375

RESUMO

Patulin (PAT) is a compound produced by fungi including those of the Aspergillus, Penicillium, and Byssochlamys species. PAT has been linked with negative outcomes in certain microorganisms and animal species, but how it causes hepatotoxicity is poorly understood. In this study, we determined that, by treating HepG2 cells using PAT, these cells could be induced to rapidly undergo autophagy, and this was followed within 12 h of treatment by lysosomal membrane permeabilization (LMP) and cathepsin B release. We were able to block these outcomes if cells were treated with 3-methyladenine (3MA), an inhibitor of autophagy, prior to PAT treatment. Moreover, PAT-induced collapse of mitochondrial membrane potential (ΔΨm) depended both on cathepsin B and autophagy. 3MA was further able to reduce the induction of apoptosis in response to PAT, suggesting that autophagy is a driving mechanism for this apoptotic induction. Inhibiting cathepsin B using CA-074 Me further reduced PAT-induced collapses of ΔΨm, mitochondiral cytochrome c release, and apoptosis. We also found that extended treatment of HepG2 cells using PAT over a period of 24 h led to the impairment of mitophagy such that morphologically swollen mitochondria accumulated within cells, and PINK1 failed to colocalize with LC3. Together these data reveal that PAT treatment can promote the induction of apoptosis in HepG2 cells in a manner dependent upon autophagy that progresses via the lysosomal-mitochondrial axis. This study thereby affords new insights into the mechanisms by which PAT drives hepatotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Patulina/toxicidade , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Células Hep G2 , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Cell Death Dis ; 9(10): 946, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237538

RESUMO

Arsenic exposure causes nonalcoholic steatohepatitis (NASH). Inflammation is a key contributor to the pathology of nonalcoholic fatty liver disease (NAFLD), including NASH. However, it is unclear how arsenic induces inflammation. In mouse livers, we show that arsenic trioxide (As2O3) induced NASH, increased autophagy and NLRP3 inflammasome activation, increased lipid accumulation, and resulted in dysregulation of lipid-related genes. Supplemented with taurine (Tau) attenuated the inflammation and autophagy caused by As2O3. In HepG2 cells, we found that As2O3-induced pyroptotic cell death was dependent upon the activation of NLRP3 inflammasome, which was CTSB-dependent. In addition, inhibiting autophagy alleviated the As2O3-induced increase of cytosolic CTSB expression and subsequent release of LDH, activation of the NLRP3 inflammasome, and pyroptosis. Moreover, we found that Tau alleviated As2O3-induced elevation of autophagy, CTSB expression, and activation of the NLRP3 inflammasome, and reduced the release of LDH, pyroptotic cell death, and inflammation. Interestingly, As2O3-induced lipid accumulation could not be alleviated by either inhibition of autophagy nor by inhibition of CTSB. Additionally, neither inhibition of the NLRP3 inflammasome or Tau treatment could alleviate lipid accumulation. These results demonstrated that As2O3-induced pyroptosis involves autophagy, CTSB, and the NLRP3 inflammasome cascade, and that Tau alleviates As2O3-induced liver inflammation by inhibiting the autophagic-CTSB-NLRP3 inflammasomal pathway rather than decreasing lipid accumulation. These findings give insight into the association of autophagy, inflammation, pyroptosis, and NASH induced by As2O3.


Assuntos
Arsênio/toxicidade , Inflamação/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Piroptose/efeitos dos fármacos , Taurina/uso terapêutico , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Hepatopatia Gordurosa não Alcoólica/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA