Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Angew Chem Int Ed Engl ; : e202416828, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319629

RESUMO

The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has become an attractive tumor treatment modality, yet the facile design of photoimmunotheranostic agents with efficient near infrared (NIR) light-absorbing and immune- activating capabilities remains a tremendous challenge. Herein, we developed a NIR-activable organic charge transfer complex (CTC), with perylene (PER) as the electron donor and 4,5,9,10-tetrabromoisochromeno [6,5,4-def]isochromene-1,3,6,8-tetraone (Br4NDI) as the electron acceptor. Through further supramolecular assembly, the PER-Br4NDI nanoparticle (PBND NP) for spatiotemporally controlled photoimmunotherapy was constructed. The PBND NP exhibits superb NIR absorption, robust intermolecular charge transfer, and enhanced intersystem crossing. Upon NIR photoirradiation, the PBND NP effectively exerts photothermal and photodynamic effects with a remarkable photothermal conversion efficiency of 63.5% and a high reactive oxygen species generation capability, which not only directly ablates primary tumors, but also dramatically suppresses distant tumor growth via promoted immunogenic cell death. Moreover, programmed cell death protein 1 antibody acts synergistically to block immune evasion and ultimately enhances cancer treatment efficacy. This work therefore sheds light on the design of organic CTCs for synergistic photoimmunotherapy.

2.
Med Phys ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298684

RESUMO

BACKGROUND: Cone beam computed tomography (CBCT) provides critical anatomical information for adaptive radiotherapy (ART), especially for tumors in the pelvic region that undergo significant deformation. However, CBCT suffers from inaccurate Hounsfield Unit (HU) values and lower soft tissue contrast. These issues affect the accuracy of pelvic treatment plans and implementation of the treatment, hence requiring correction. PURPOSE: A novel stacked coarse-to-fine model combining Denoising Diffusion Probabilistic Model (DDPM) and spatial-frequency domain convolution modules is proposed to enhance the imaging quality of CBCT images. METHODS: The enhancement of low-quality CBCT images is divided into two stages. In the coarse stage, the improved DDPM with U-ConvNeXt architecture is used to complete the denoising task of CBCT images. In the fine stage, the deep convolutional network model jointly constructed by fast Fourier and dilated convolution modules is used to further enhance the image quality in local details and global imaging. Finally, the accurate pseudo-CT (pCT) images consistent with the size of the original data are obtained. Two hundred fifty paired CBCT-CT images from cervical and rectal cancer, combined with 200 public dataset cases, were used collectively for training, validation, and testing. RESULTS: To evaluate the anatomical consistency between pCT and real CT, we have used the mean(std) of structure similarity index measure (SSIM), peak signal to noise ratio (PSNR), and normalized cross-correlation (NCC). The numerical results for the above three metrics comparing the pCT synthesized by the proposed model against real CT for cervical cancer cases were 87.14% (2.91%), 34.02 dB (1.35 dB), and 88.01% (1.82%), respectively. For rectal cancer cases, the corresponding results were 86.06% (2.70%), 33.50 dB (1.41 dB), and 87.44% (1.95%). The paired t-test analysis between the proposed model and the comparative models (ResUnet, CycleGAN, DDPM, and DDIM) for these metrics revealed statistically significant differences (p < 0.05). The visual results also showed that the anatomical structures between the real CT and the pCT synthesized by the proposed model were closer. For the dosimetric verification, mean absolute error of dosimetry (MAEdoes) values for the maximum dose (Dmax), the minimum dose (Dmin), and the mean dose (Dmean) in the planning target volume (PTV) were analyzed, with results presented as mean (lower quartile, upper quartile). The experimental results show that the values of the above three dosimetry indexes (Dmin, Dmax, and Dmean) for the pCT images synthesized by the proposed model were 0.90% (0.48%, 1.29%), 0.82% (0.47%, 1.17%), and 0.57% (0.44%, 0.67%). Compared with 10 cases of the original CBCT image by Mann-Whitney test (p < 0.05), it also proved that pCT can significantly improve the accuracy of HU values for the dose calculation. CONCLUSION: The pCT synthesized by the proposed model outperforms the comparative models in numerical accuracy and visualization, promising for ART of pelvic cancers.

3.
Langmuir ; 40(36): 19125-19133, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190551

RESUMO

Chemodynamic therapy is an appealing modality in cancer treatment. However, its therapeutic effectiveness is impeded by insufficient catalytic efficiency and overexpression of glutathione (GSH) at the tumor site. In this study, a poly(o-phenylenediamine) (PoPD)@copper sulfide (CuS) nanoplatform was developed as dual-level reactive oxygen species (ROS) amplifier for enhanced photothermal-chemodynamic therapy. The PoPD@CuS nanoplatform exhibited photothermal performance, chemodynamic performance, and GSH-depleting capability. Alongside its improved photothermal conversion efficiency with tumor pH-responsiveness, the photothermal behavior of PoPD@CuS could elevate chemodynamic activity by regulating the temperature spatiotemporally, leading to increased ROS production. Moreover, GSH depletion of PoPD@CuS could suppress ROS scavenging, further enhancing oxidative stress in the tumor region. Consequently, functioning as a dual-level ROS amplifier, PoPD@CuS showcased remarkable effectiveness in photothermal-chemodynamic combination therapy.


Assuntos
Cobre , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Humanos , Animais , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia , Glutationa/metabolismo , Glutationa/química , Camundongos , Terapia Fototérmica , Fototerapia/métodos , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia
4.
Phys Eng Sci Med ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101991

RESUMO

Intensity-modulated radiation therapy (IMRT) has been widely used in treating head and neck tumors. However, due to the complex anatomical structures in the head and neck region, it is challenging for the plan optimizer to rapidly generate clinically acceptable IMRT treatment plans. A novel deep learning multi-scale Transformer (MST) model was developed in the current study aiming to accelerate the IMRT planning for head and neck tumors while generating more precise prediction of the voxel-level dose distribution. The proposed end-to-end MST model employs the shunted Transformer to capture multi-scale features and learn a global dependency, and utilizes 3D deformable convolution bottleneck blocks to extract shape-aware feature and compensate the loss of spatial information in the patch merging layers. Moreover, data augmentation and self-knowledge distillation are used to further improve the prediction performance of the model. The MST model was trained and evaluated on the OpenKBP Challenge dataset. Its prediction accuracy was compared with three previous dose prediction models: C3D, TrDosePred, and TSNet. The predicted dose distributions of our proposed MST model in the tumor region are closest to the original clinical dose distribution. The MST model achieves the dose score of 2.23 Gy and the DVH score of 1.34 Gy on the test dataset, outperforming the other three models by 8%-17%. For clinical-related DVH dosimetric metrics, the prediction accuracy in terms of mean absolute error (MAE) is 2.04% for D 99 , 1.54% for D 95 , 1.87% for D 1 , 1.87% for D mean , 1.89% for D 0.1 c c , respectively, superior to the other three models. The quantitative results demonstrated that the proposed MST model achieved more accurate voxel-level dose prediction than the previous models for head and neck tumors. The MST model has a great potential to be applied to other disease sites to further improve the quality and efficiency of radiotherapy planning.

5.
J Appl Clin Med Phys ; 25(7): e14317, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38439583

RESUMO

PURPOSE: Patient setup errors have been a primary concern impacting the dose delivery accuracy in radiation therapy. A robust treatment plan might mitigate the effects of patient setup errors. In this reported study, we aimed to evaluate the impact of translational and rotational errors on the robustness of linac-based, single-isocenter, coplanar, and non-coplanar volumetric modulated arc therapy treatment plans for multiple brain metastases. METHODS: Fifteen patients were retrospectively selected for this study with a combined total of 49 gross tumor volumes (GTVs). Single-isocenter coplanar and non-coplanar plans were generated first with a prescribed dose of 40 Gy in 5 fractions or 42 Gy in 7 fractions to cover 95% of planning target volume (PTV). Next, four setup errors (+1  and +2 mm translation, and +1° and +2° rotation) were applied individually to generate modified plans. Different plan quality evaluation metrics were compared between coplanar and non-coplanar plans. 3D gamma analysis (3%/2 mm) was performed to compare the modified plans (+2 mm and +2° only) and the original plans. Paired t-test was conducted for statistical analysis. RESULTS: After applying setup errors, variations of all plan evaluation metrics were similar (p > 0.05). The worst case for V100% to GTV was 92.07% ± 6.13% in the case of +2 mm translational error. 3D gamma pass rates were > 90% for both coplanar (+2 mm and +2°) and the +2 mm non-coplanar groups but was 87.40% ± 6.89% for the +2° non-coplanar group. CONCLUSION: Translational errors have a greater impact on PTV and GTV dose coverage for both planning methods. Rotational errors have a greater negative impact on gamma pass rates of non-coplanar plans. Plan evaluation metrics after applying setup errors showed that both coplanar and non-coplanar plans were robust and clinically acceptable.


Assuntos
Neoplasias Encefálicas , Órgãos em Risco , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Radioterapia de Intensidade Modulada/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Estudos Retrospectivos , Aceleradores de Partículas/instrumentação , Órgãos em Risco/efeitos da radiação , Prognóstico , Posicionamento do Paciente
6.
J Colloid Interface Sci ; 665: 1-9, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513403

RESUMO

The cancer therapeutic efficacy of the peroxidase (POD)-mimicking nanozyme-based monotherapy is significantly hindered due to insufficient intratumoral hydrogen peroxide (H2O2) and glutathione (GSH) consumption effect on reactive oxygen species (ROS). In this study, we present the development of poly(o-phenylenediamine)@gold nanoparticles (AuNPs) (PoPD@Au) nanocomposites for multifunctional catalytic-photothermal therapy. These nanocomposites exhibit triple distinct nanozymatic activities, i.e., POD-like activity that catalyzes H2O2 to ROS, glucose oxidase (GOx)-like activity that supplements endogenous H2O2, and GSH depleting activity that decreases the ROS consumption efficiency. This open source and reduce expenditure strategy for ROS generation allows for the amplification of tumor oxidative stress, thereby enhancing anti-tumor efficiency. Additionally, the PoPD@Au nanocomposites demonstrate outstanding photothermal conversion efficiency, contributing to the synergistic effect between PoPD and AuNPs. Moreover, we reveal the improved photothermal performance of PoPD@Au triggered by the tumor microenvironment pH, which provides additional benefits for targeted catalytic-photothermal therapy. This "four-in-one" design of PoPD@Au enables efficient anti-tumor effects both in vitro and in vivo, making it a universal strategy for engineering catalytic-photothermal therapeutic nanoagents.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Ouro/farmacologia , Peróxido de Hidrogênio , Terapia Fototérmica , Espécies Reativas de Oxigênio , Glutationa , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Adv Sci (Weinh) ; 11(16): e2308493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380492

RESUMO

Supramolecular chirality-mediated selective interaction among native assemblies is essential for precise disease diagnosis and treatment. Herein, to fully understand the supramolecular chiral binding affinity-achieved therapeutic efficiency, supramolecular chiral nanoparticles (WP5⊃D/L-Arg+DOX+ICG) with the chirality transfer from chiral arginine (D/L-Arg) to water-soluble pillar[5]arene (WP5) are developed through non-covalent interactions, in which an anticancer drug (DOX, doxorubicin hydrochloride) and a photothermal agent (ICG, indocyanine green) are successfully loaded. Interestingly, the WP5⊃D-Arg nanoparticles show 107 folds stronger binding capability toward phospholipid-composed liposomes compared with WP5⊃L-Arg. The enantioselective interaction further triggers the supramolecular chirality-specific drug accumulation in cancer cells. As a consequence, WP5⊃D-Arg+DOX+ICG exhibits extremely enhanced chemo-photothermal synergistic therapeutic efficacy (tumor inhibition rate of 99.4%) than that of WP5⊃L-Arg+DOX+ICG (tumor inhibition rate of 56.4%) under the same condition. This work reveals the breakthrough that supramolecular chiral assemblies can induce surprisingly large difference in cancer therapy, providing strong support for the significance of supramolecular chirality in bio-application.


Assuntos
Antineoplásicos , Doxorrubicina , Verde de Indocianina , Nanopartículas , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Verde de Indocianina/química , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Arginina/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Compostos de Amônio Quaternário/química , Calixarenos/química , Estereoisomerismo
8.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391135

RESUMO

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Assuntos
Hiperuricemia , Peroxidase , Humanos , Peroxidase/uso terapêutico , Urato Oxidase/uso terapêutico , Povidona/uso terapêutico , Hiperuricemia/tratamento farmacológico , Peróxido de Hidrogênio , Ácido Úrico/metabolismo , Oxirredutases , Corantes
9.
J Colloid Interface Sci ; 657: 993-1002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104364

RESUMO

Phototherapy, encompassing photothermal therapy and photodynamic therapy, is gaining attention as an appealing cancer treatment modality. To enhance its clinical implementation, a comprehensive exploration of the pivotal factors influencing phototherapy is warranted. In this study, the L/d-cysteine (Cys)-copper ion (Cu2+) chiral nanoparticles, through the assembly of L/d-Cys-Cu2+ coordination complexes, were constructed. We found that these nanoparticles interacted with chiral liposomes in a chirality-dependent manner, with d-Cys-Cu2+ nanoparticles exhibiting more than three times stronger binding affinity than l-Cys-Cu2+ nanoparticles. Furthermore, we demonstrated that the d-Cys-Cu2+ nanoparticles were more efficiently internalized by Hela cells in contrast with l-Cys-Cu2+. On this basis, indocyanine green (ICG), acting as both photothermal and photodynamic agent, was encapsulated into L/d-Cys-Cu2+ nanoparticles. Experimental results showed that the l-Cys-Cu2+-ICG and d-Cys-Cu2+-ICG nanoparticles displayed almost identical photothermal performance and singlet oxygen (1O2) generation capability in aqueous solution. However, upon laser irradiation, the d-Cys-Cu2+-ICG nanoparticles achieved enhanced anti-tumor effects compared to l-Cys-Cu2+-ICG due to their chirality-promoted higher cellular uptake efficiency. These findings highlight the crucial role of chirality in phototherapy and provide new perspectives for engineering cancer therapeutic agents.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Cobre/farmacologia , Cisteína , Células HeLa , Fototerapia/métodos , Verde de Indocianina/química , Nanopartículas/química , Linhagem Celular Tumoral
10.
Biosensors (Basel) ; 13(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37622913

RESUMO

Glutathione (GSH) is the most abundant low-molecular-weight biological thiol in vivo and has been linked to several diseases. The accurate quantification of GSH is therefore crucial for disease diagnosis and monitoring. In this study, we prepared self-assembled Cu(I)-Cys (cysteine) nanozymes through a two-step procedure. The Cu(I)-Cys nanoparticles exhibited peroxidase-mimicking activity. Upon the addition of H2O2, they were able to oxidize 3,3,5,5-tetramethylbenzidine (TMB) into oxTMB, resulting in a measurable increase in UV-Vis absorption at 655 nm. However, in the presence of GSH, oxTMB was reduced back to TMB, leading to a decrease in UV-Vis absorption at 655 nm. By utilizing these changes in the absorption intensity, we achieved the sensitive detection of GSH with a detection limit of 2.13 µM. Moreover, taking advantage of the different peroxidase-mimicking activities of Cu(I)-Cys nanoparticles at various pH values, a sensor array with Cu(I)-Cys nanoparticles at pH 4 and pH 5 was constructed. The discrimination of GSH among Cys and ascorbic acid was achieved and the practicability of the sensor array in human serum was validated. This novel approach holds significant promise for the precise discrimination and quantification of GSH and its potential applications in disease diagnosis and therapeutics.


Assuntos
Glutationa , Peróxido de Hidrogênio , Humanos , Ácido Ascórbico , Cisteína , Peroxidases
11.
Phys Eng Sci Med ; 46(3): 981-994, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37378823

RESUMO

TaiChi, a new multi-modality radiotherapy platform that integrates a linear accelerator, a focusing gamma system, and a kV imaging system within an enclosed O-ring gantry, was introduced into clinical application. This work aims to assess the technological characteristics and commissioning results of the TaiChi platform. The acceptance testing and commissioning were performed following the manufacturer's customer acceptance tests (CAT) and several AAPM Task Group (TG) reports/guidelines. Regarding the linear accelerator (linac), all applicable validation measurements recommended by the MPPG 5.a (basic photon beam model validation, intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) validation, end-to-end(E2E) tests, and patient-specific quality assurance (QA)) were performed. For the focusing gamma system, the absorbed doses were measured using a PTW31014 ion chamber (IC) and PTW60016 diode detector. EBT3 films and a PTW60016 diode detector were employed to measure the relative output factors (ROFs). The E2E tests were performed using PTW31014 IC and EBT3 films. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were investigated using EBT3 films. The image quality was evaluated regarding the contrast-to-noise ratio (CNR), spatial resolution, and uniformity. All tests included in the CAT met the manufacturer's specifications. All MPPG 5.a measurements complied with the tolerances. The confidence limits for IMRT/VMAT point dose and dose distribution measurements were achieved according to TG-119. The point dose differences were below 1.68% and gamma passing rates (3%/2 mm) were above 95.1% for the linac E2E tests. All plans of patient-specific QA had point dose differences below 1.79% and gamma passing rates above 96.1% using the 3%/2 mm criterion suggested by TG-218. For the focusing gamma system, the differences between the calculated and measured absorbed doses were below 1.86%. The ROFs calculated by the TPS were independently confirmed within 2% using EBT3 films and a PTW60016 detector. The point dose differences were below 2.57% and gamma passing rates were above 95.3% using the 2%/1 mm criterion for the E2E tests. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were within 0.5 mm. The image quality parameters fully complied with the manufacturer's specifications regarding the CNR, spatial resolution, and uniformity. The multi-modality radiotherapy platform complies with the CAT and AAPM commissioning criteria. The commissioning results demonstrate that this platform performs well in mechanical and dosimetry accuracy.


Assuntos
Radioterapia de Intensidade Modulada , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas , Dosagem Radioterapêutica , Radiometria
12.
Small ; 18(20): e2200588, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277929

RESUMO

Photothermal therapy (PTT) is demonstrated to be an effective methodology for cancer treatment. However, the relatively low photothermal conversion efficiency, limited tumor accumulation, and penetration still remain to be challenging issues that hinder the clinical application of PTT. Herein, the core-shell hierarchical nanostructures induced by host-guest interaction between water-soluble pillar[5]arene (WP5) and polyethylene glycol-modified aniline tetramer (TAPEG) are constructed. The pH-responsive performance endows the core-shell nanostructures with size switchable property, with an average diameter of 200 nm in the neutral pH and 60 nm in the acidic microenvironment, which facilitates not only tumor accumulation but also tumor penetration. Moreover, the structure switch of WP5⊃TAPEG under acidic microenvironment and the dual mechanism regulated extending of п conjugate, inclusion in the hydrophobic cavity of WP5 and the dense distribution in the core-shell structured assemblies, dramatically enhance the absorption in the near-infrared-II region and, further, the photothermal conversion efficiency (60.2%). The as-designed intelligent nanoplatform is demonstrated for improved antitumor efficacy via PTT.


Assuntos
Nanoestruturas , Neoplasias , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Fototerapia , Terapia Fototérmica , Polietilenoglicóis/uso terapêutico , Microambiente Tumoral
13.
Biosensors (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36671851

RESUMO

Glutathione (GSH), as the most abundant low-molecular-weight biological thiol, plays significant roles in vivo. Abnormal GSH levels have been demonstrated to be related to the dysfunction of specific physiological activities and certain kinds of diseases. Therefore, the sensing of GSH is emerging as a critical issue. Cancer, with typical high morbidity and mortality, remains one of the most serious diseases to threaten public health. As it is clear that much more concentrated GSH is present at tumor sites than at normal sites, the in vivo sensing of GSH offers an option for the early diagnosis of cancer. Moreover, by monitoring the amounts of GSH in specific microenvironments, effective diagnosis of ROS levels, neurological diseases, or even stroke has been developed as well. In this review, we focus on the fluorescent methodologies for GSH detection, since they can be conveniently applied in living systems. First, the fluorescent sensing methods are introduced. Then, the principles for fluorescent sensing of GSH are discussed. In addition, the GSH-sensing-related biological applications are reviewed. Finally, the future opportunities in in the areas of fluorescent GSH sensing-in particular, fluorescent GSH-sensing-prompted disease diagnosis-are addressed.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Glutationa , Compostos de Sulfidrila , Microambiente Tumoral
14.
J Colloid Interface Sci ; 610: 89-97, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922085

RESUMO

Synergistic therapy has been emerging as new trend for effective tumor treatment due to synchronous function and cooperative reinforcement of multi therapeutic modalities. Herein, gold nanorods (GNRs) encapsulated into polypyrrole (PPy) shell with tunable void space (GNRs@Void@PPy) showing yolk@shell nanostructures were innovatively designed. The exploitation of dual near-infrared (NIR) absorptive species offered synergistic enhancement of photothermal performance. In addition, the manipulation of the void space between them provided additional benefits of high drug encapsulation efficiency (92.6%) and, interestingly, tumor microenvironment and NIR irradiation triggered targeted drug releasing. Moreover, the GNRs@Void@PPy exhibited excellent biocompatibility, and optimal curative effect by chemo-photothermal synergistic therapy was achieved through both in vitro and in vivo antitumor activity investigation.


Assuntos
Nanotubos , Neoplasias , Preparações Farmacêuticas , Linhagem Celular Tumoral , Doxorrubicina , Ouro , Humanos , Neoplasias/tratamento farmacológico , Fototerapia , Polímeros , Pirróis , Microambiente Tumoral
15.
J Colloid Interface Sci ; 608(Pt 2): 1463-1470, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742065

RESUMO

Innovative design of nanocatalyst with high activity remains to be great challenge. Platinum (Pt) nanoparticle has already demonstrated to be excellent candidates in the field of catalysis. However, the scarcity and high price significantly hinder its large-scale production. In this work, dumbbell-like alloying nanoparticle of platinum-iron/ferroferric oxide (PtFeFe3O4) was prepared. On one hand, the design of the alloying nanoparticle can manipulate the d-band center of Pt, in further, the interaction with substrates. In addition, the dumbbell-like structured PtFeFe3O4 can offer heterogeneous interface, of which the interaction between PtFe and Fe3O4, supported by the X-ray photoelectron spectroscopic (XPS) results, leads to the enhanced catalytic efficiency. On the other hand, the introduction of Fe (iron) composition largely decreases the necessary amount of Pt, leading to efficient cost reduction. Moreover, to avoid the aggregation related activity attenuation problem, PtFeFe3O4 nanoparticle located in cavity of nitrogen heteroatom-doped carbon shell (PtFeFe3O4@NC) as yolk@shell nanostructure was constructed and its improved catalytic performance was demonstrated towards the reactions of 4-nitrophenol (4-NP) reduction, ß-ionone and benzhydrol oxidation.


Assuntos
Nanopartículas , Platina , Catálise , Ferro , Oxirredução
16.
J Xray Sci Technol ; 29(6): 1103-1112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421003

RESUMO

OBJECTIVE: To improve safety and efficiency of radiotherapy process by customizing a Varian ARIA oncology information system following the guidelines provided in AAPM TG-100 report. METHODS: First, failure mode and effects analysis (FMEA) and quality management program were implemented for radiotherapy process. We have customized the visual care path in the ARIA system and set up a series of templates for simulation, prescription, contouring, treatment planning, and multiple checklists. Average time of activities' completion and amount of planning errors were compared before and after the use of the customized ARIA to evaluate its impact on the efficiency and safety of radiotherapy. RESULTS: Completion time and on-time completion rate of the key activities in the care path are improved. The time of OAR/targets contouring decreases from (1.94±1.51) days to (1.64±1.07) days (p = 0.003), with the on-time completion rate increases from 77.4%to 83.3%(p = 0.048). Treatment planning time decreases from (0.81±0.65) days to (0.55±0.51) days (p < 0.001), with the on-time completion rate increases from 96.6%to 98.3%(p = 0.163). Waiting time of patients decreases from (4.50±1.83) days to (4.04±1.34) days (p < 0.001), with the on-time completion rate increases from 81.9%to 89.7%(p = 0.003). In addition, the average plan error rate decreases from 5.5%(2.9%for safety errors and 2.6%for non-normative errors) to 2.4%(1.6%for safety errors and 0.8%for non-normative errors) (p = 0.029). CONCLUSION: Our study demonstrates that the customized ARIA system has the potential to promote efficiency and safety in radiotherapy process management. It is beneficial to organize and accelerate the treatment process with more effective communications and fewer errors.


Assuntos
Radioterapia (Especialidade) , Lista de Checagem , Humanos , Sistemas de Informação , Planejamento da Radioterapia Assistida por Computador , Software
17.
Chempluschem ; 84(10): 1452, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31943924

RESUMO

Invited for this month's cover is the group of Prof. Fabrizio Mancin from the University of Padova, Italy. The cover picture shows an 18-crown-6-functionalized gold nanoparticle that switches its molecular recognition preference from organic cations to organic anions in the presence of potassium ions, thus allowing 1 H NMR sensing of potassium. Read the full text of the article at 10.1002/cplu.201900028.

18.
Chempluschem ; 84(10): 1498-1502, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31943937

RESUMO

A sensing protocol to detect potassium ions in water by 1 H NMR spectroscopy is described. The method exploits the K+ -modulated affinity of 18-crown-6 functionalized gold nanoparticles towards organic ions, combined with NOE magnetization transfer. Binding of K+ to the crown ether moieties switches the nanoreceptor preference (and its ability to transfer magnetization) from organic cations (tyramine) to organic anions (phloretate). In this way, a ratiometric NMR signal is produced with a detection limit of 0.6 mM. Detection can be performed in 20 min with standard instruments and with little interference from other alkali and alkaline earth metal ions present in the sample.

19.
Curr Biol ; 28(13): 2181-2189.e4, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30008334

RESUMO

It is widely believed that tau stabilizes microtubules in the axon [1-3] and, hence, that disease-induced loss of tau from axonal microtubules leads to their destabilization [3-5]. An individual microtubule in the axon has a stable domain and a labile domain [6-8]. We found that tau is more abundant on the labile domain, which is inconsistent with tau's proposed role as a microtubule stabilizer. When tau is experimentally depleted from cultured rat neurons, the labile microtubule mass of the axon drops considerably, the remaining labile microtubule mass becomes less labile, and the stable microtubule mass increases. MAP6 (also called stable tubule-only polypeptide), which is normally enriched on the stable domain [9], acquires a broader distribution across the microtubule when tau is depleted, providing a potential explanation for the increase in stable microtubule mass. When MAP6 is depleted, the labile microtubule mass becomes even more labile, indicating that, unlike tau, MAP6 is a genuine stabilizer of axonal microtubules. We conclude that tau is not a stabilizer of axonal microtubules but is enriched on the labile domain of the microtubule to promote its assembly while limiting the binding to it of genuine stabilizers, such as MAP6. This enables the labile domain to achieve great lengths without being stabilized. These conclusions are contrary to tau dogma.


Assuntos
Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Ratos , Ratos Sprague-Dawley
20.
Cancer Med ; 5(3): 434-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26806114

RESUMO

The aim of this study was to observe the relationship between dose-volume histogram (DVH) parameters and rectal late side effects (LSE) in computed tomography (CT)-based brachytherapy (BT) for patients with locally advanced cervical cancer. In total, 144 cervical cancer patients received external beam radiotherapy and CT-based BT. The data from 111 survival cases with pelvic local control (LC) were used to analyze the relationship between DVH parameters and rectal LSE. The total doses, manifesting 2, 1, and 0.1 cm(3) (D2cc , D1cc , and D0.1cc ) of the rectum, and D90 for high-risk clinical target volume (HR CTV) were computed and normalized to 2 Gy fractions (EQD2) using a linear-quadratic model. The rectal LSE were evaluated by the late effects in normal tissues-subjective, objective, management, and analytic (LENT-SOMA) scale. A dose-response relationship was evaluated by probit analyses. For all patients, the total rate of rectal LSE was 56%, and the rate of ≥Grade 2 LSE was 27.4%. For the 111 survival cases with pelvic LC, the total mean for D2cc was 71.23 ± 5.54 Gy for the rectum, and the D2cc , D1cc , and D0.1cc values for Grades 2 and 3 were higher than those for Grades 0 and 1. In addition, the number of complications increased, and the complications became more severe as the dose increased, with a dose of 73.5 Gy resulting in a 10% probability of ≥Grade 3 LSE. In conclusion, DVH parameters could predict the incidence and grades of rectal LSE in CT-based BT. D2cc showed an excellent predictive value, and 73.5 Gy for D2cc of the rectum might be considered as an alternative dose limit.


Assuntos
Braquiterapia/efeitos adversos , Reto/efeitos da radiação , Tomografia Computadorizada de Emissão/métodos , Neoplasias do Colo do Útero/radioterapia , Adulto , Idoso , Braquiterapia/métodos , Relação Dose-Resposta à Radiação , Feminino , Humanos , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Análise de Sobrevida , Resultado do Tratamento , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA