Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(29): 24942-24950, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910152

RESUMO

The abiotic reaction products of polycyclic aromatic hydrocarbons (PAHs) with hydroxyl radicals (•OH) and nitrate radicals (•NO3) are nitro-, oxygen-, and hydroxyl-containing PAHs (NPAHs, OPAHs, and OHPAHs). Four methods of the highest occupied molecular orbital (HOMO), Fukui function (FF), dual descriptor (DD), and population of π electrons (PP-π) are selected to predict the chemical reactivity of PAHs attacked by •OH and •NO3 in this study. The predicted •OH-initiated and •NO3-initiated transformation products are compared with the main PAH transformation products (PAH-TPs) observed in the laboratory. The results indicate that PP-π and DD approaches fail to predict the transformation products of fused PAHs containing five-membered rings. By predicting the PAH-TPs of 13-14 out of the 15 parent PAHs accurately, HOMO and FF methods were shown to be suitable for predicting the transformation products formed from the abiotic reactions of fused PAHs with •OH and •NO3.

2.
Nanoscale ; 8(3): 1430-6, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26673658

RESUMO

Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In2O3/CuO bilayer sensors exhibit nearly 3 and 5 times higher performance than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on the p-n hetero-junction, which contributed to the enhanced sensing performance, was also experimentally confirmed by a control experiment in which an SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications.

3.
ACS Appl Mater Interfaces ; 7(15): 7863-8, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25839786

RESUMO

We have stabilized the iron oxide nanoparticles (NPs) of various sizes on layered carbon materials (Fe-oxide/C) that show excellent catalytic performance. From the characterization of X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), scanning transmission X-ray microscopy (STXM) and X-ray magnetic circular dichroism spectroscopy (XMCD), a strong interfacial interaction in the Fe-oxide/C hybrids has been observed between the small iron oxide NPs and layered carbon in contrast to the weak interaction in the large iron oxide NPs. The interfacial interaction between the NPs and layered carbon is found to link with the improved catalytic performance. In addition, the Fe L-edge XMCD spectra show that the large iron oxide NPs are mainly γ-Fe2O3 with a strong ferromagnetic property, whereas the small iron oxide NPs with strong interfacial interaction are mainly α-Fe2O3 or amorphous Fe2O3 with a nonmagnetic property. The results strongly suggest that the interfacial interaction plays a key role for the catalytic performance, and the experimental findings may provide guidance toward rational design of high-performance catalysts.


Assuntos
Carbono/química , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Teste de Materiais , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA