Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(4): 780-790, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36038765

RESUMO

Increasing evidence shows that smoking-obtained nicotine is indicated to improve cognition and mitigate certain symptoms of schizophrenia. In this study, we investigated whether chronic nicotine treatment alleviated MK-801-induced schizophrenia-like symptoms and cognitive impairment in mice. Mice were injected with MK-801 (0.2 mg/kg, i.p.), and the behavioral deficits were assessed using prepulse inhibition (PPI) and T-maze tests. We showed that MK-801 caused cognitive impairment accompanied by increased expression of PDZ and LIM domain 5 (Pdlim5), an adaptor protein that is critically associated with schizophrenia, in the prefrontal cortex (PFC). Pretreatment with nicotine (0.2 mg · kg-1 · d-1, s.c., for 2 weeks) significantly ameliorated MK-801-induced schizophrenia-like symptoms and cognitive impairment by reversing the increased Pdlim5 expression levels in the PFC. In addition, pretreatment with nicotine prevented the MK-801-induced decrease in CREB-regulated transcription coactivator 1 (CRTC1), a coactivator of CREB that plays an important role in cognition. Furthermore, MK-801 neither induced schizophrenia-like behaviors nor decreased CRTC1 levels in the PFC of Pdlim5-/- mice. Overexpression of Pdlim5 in the PFC through intra-PFC infusion of an adreno-associated virus AAV-Pdlim5 induced significant schizophrenia-like symptoms and cognitive impairment. In conclusion, chronic nicotine treatment alleviates schizophrenia-induced memory deficits in mice by regulating Pdlim5 and CRTC1 expression in the PFC.


Assuntos
Disfunção Cognitiva , Maleato de Dizocilpina , Camundongos , Animais , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacologia , Nicotina/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Córtex Pré-Frontal/metabolismo , Cognição , Fatores de Transcrição/metabolismo
2.
Front Aging Neurosci ; 13: 650103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776747

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairments, which has no effective therapy. Stem cell transplantation shows great potential in the therapy of various disease. However, the application of stem cell therapy in neurological disorders, especially the ones with a long-term disease course such as AD, is limited by the delivery approach due to the presence of the brain blood barrier. So far, the most commonly used delivery approach in the therapy of neurological disorders with stem cells in preclinical and clinical studies are intracranial injection and intrathecal injection, both of which are invasive. In the present study, we use repetitive intranasal delivery of human neural stem cells (hNSCs) to the brains of APP/PS1 transgenic mice to investigate the effect of hNSCs on the pathology of AD. The results indicate that the intranasally transplanted hNSCs survive and exhibit extensive migration and higher neuronal differentiation, with a relatively limited glial differentiation. A proportion of intranasally transplanted hNSCs differentiate to cholinergic neurons, which rescue cholinergic dysfunction in APP/PS1 mice. In addition, intranasal transplantation of hNSCs attenuates ß-amyloid accumulation by upregulating the expression of ß-amyloid degrading enzymes, insulin-degrading enzymes, and neprilysin. Moreover, intranasal transplantation of hNSCs ameliorates other AD-like pathology including neuroinflammation, cholinergic dysfunction, and pericytic and synaptic loss, while enhancing adult hippocampal neurogenesis, eventually rescuing the cognitive deficits of APP/PS1 transgenic mice. Thus, our findings highlight that intranasal transplantation of hNSCs benefits cognition through multiple mechanisms, and exhibit the great potential of intranasal administration of stem cells as a non-invasive therapeutic strategy for AD.

3.
ACS Appl Mater Interfaces ; 11(16): 14830-14839, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30945528

RESUMO

High-Ni layered oxides are potential cathodes for high energy Li-ion batteries due to their large specific capacity advantage. However, the fast capacity fade by undesirable structural degradation in liquid electrolyte during long-term cycling is a stumbling block for the commercial application of high-Ni oxides. In this work, a functional gel polymer electrolyte, grafted with sodium alginate, is introduced to increase the stability of high-Ni oxide cathodes at the levels of both the particle and electrode. An in situ generated ion-conducting layer appears on the interface through the chemical interaction between transition-metal cations of the cathode and the metalophilic reticulum group in sodium alginate. Such a tailoring layer can not only enhance the interfacial compatibility on the cathode/electrolyte interface, reducing the interfacial resistance, but also inhibit the HF corrosion, suppressing the dissolution of transition-metal cations and harmful gradient distribution of components through the oxide cathode at the electrode level. Meanwhile, detrimental microcracks in oxide microspheres and between primary crystallites are impressively inhibited at the particle level. The high-Ni oxide cathode with the metalophilic gel polymer electrolyte shows excellent cycle stability with large initial capacity of 204.9 mA h g-1 at a 1.0 C rate and high discharge capacity retention within 300 cycles at high temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA