Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Biol Med ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940672

RESUMO

OBJECTIVE: Radiotherapy has achieved remarkable effects in treating non-small cell lung cancer (NSCLC). However, radioresistance remains the major obstacle to achieving good outcomes. This study aims at identifying potential targets for radiosensitizing NSCLC and elucidating the underlying mechanisms. METHODS: Lentivirus-based infection and CRISPR/Cas9 technology were used to modulate the expression of microRNA-384 (miR-384). Cell clonogenic formation assays and a xenograft tumor model were used to analyze radiosensitivity in NSCLC cells. Fluorescence-activated cell sorting was used to assess the cell cycle and cell death. Immunofluorescence staining, Comet assays, and homologous recombination or non-homologous end-joining I-SceI/GFP reporter assays were used to study DNA damage and repair. Western blotting and quantitative real-time polymerase chain reaction were used to identify the targets of miR-384. Chromatin immunoprecipitation and polymerase chain reaction were performed to evaluate upstream regulators of miR-384. RESULTS: MiR-384 was downregulated in NSCLC. Overexpression of miR-384 increased the radiosensitivity of NSCLC cells in vitro and in vivo, whereas knockout of miR-384 led to radioresistance. Upregulation of miR-384 radiosensitized NSCLC cells by decreasing G2/M cell cycle arrest, inhibiting DNA damage repair, and consequently increasing cell death; miR-384 depletion had the opposite effects. Further investigation revealed that ATM, Ku70, and Ku80 were direct targets of miR-384. Moreover, miR-384 was repressed by NF-κB. CONCLUSIONS: MiR-384 is an ionizing radiation-responsive gene repressed by NF-κB. MiR-384 enhances the radiosensitivity of NSCLC cells via targeting ATM, Ku80, and Ku70, which impairs DNA damage repair. Therefore, miR-384 may serve as a novel radiosensitizer for NSCLC.

2.
Cancer Lett ; 595: 217000, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38821254

RESUMO

Radiotherapy is one of the predominant treatment modalities for almost all kinds of malignant cancers, including non-small cell lung cancer (NSCLC). Increasing evidence shows that ionizing radiation (IR) induces reactive oxygen species (ROS) leading to lipid peroxidation and subsequently ferroptosis of cancer cells. However, cancer cells evolve multiple mechanisms against ROS biology resulting in resistance to ferroptosis and radiotherapy, of which NRF2 signaling is one of the most studied. In the current research, we identified that microRNA-139 (miR-139) could be a novel radiosensitizer for NSCLC by inhibiting NRF2 signaling. We found that miR-139 possessed great potential as a diagnostic biomarker for NSCLC and multiple other types of cancer. Overexpression of miR-139 increased radiosensitivity of NSCLC cells in vitro and in vivo. MiR-139 directly targeted cJUN and KPNA2 to impair NRF2 signaling resulting in enhanced IR-induced lipid peroxidation and cellular ferroptosis. We proved KPNA2 to be a binding partner of NRF2 that involved in nuclear translocation of NRF2. Moreover, we found that IR induced miR-139 expression through transcriptional factor EGR1. EGR1 bound to the promoter region and transactivated miR-139. Overall, our findings elucidated the effect of EGR1/miR-139/NRF2 in IR-induced ferroptosis of NSCLC cells and provided theoretical support for the potential diagnostic biomarkers and therapeutic targets for the disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína 1 de Resposta de Crescimento Precoce , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , Fator 2 Relacionado a NF-E2 , Tolerância a Radiação , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ferroptose/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Tolerância a Radiação/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Camundongos Nus , Feminino
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447133

RESUMO

Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18-25 µM, followed by hydrogenotrophic (KI, 60-90 µM) and methylotrophic (KI, 110-130 µM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Ecossistema , Retroalimentação , Dióxido de Carbono/análise , Solo , Metano/análise
4.
Thorac Cancer ; 14(11): 969-982, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814090

RESUMO

Metastasis is the major cause of cancer-related death of cancer patients. Epithelial-mesenchymal transition (EMT) is one critical process during the cascade of tumor metastasis. EMT is a developmental program exploited by cancer cells to transition from epithelial state to mesenchymal state and confers metastatic properties as well as treatment resistance. Finding factors to inhibit EMT will greatly improve the prognosis patients. Spermatogenesis associated 2 (SPATA2) was originally isolated from human testis and proved playing a role in spermatogenesis. To date, however, the role of SPATA2 in oncogenesis is unknown. In the current study, by mining the public database and validating in a cohort of collected non-small cell lung cancer (NSCLC) specimens, we uncovered that the expression of SPATA2 positively correlated with the prognosis of patients and was an independent prognosis marker in NSCLC. Functional studies proved that ectopic overexpression of SPATA2 inhibited EMT resulting in impaired motility and invasiveness properties in vitro and metastasis in vivo, and increased radiosensitivity in NSCLC. Mechanistic investigation showed that SPATA2 could suppress the ß-catenin signaling via attenuating DVL1 ubiquitination to achieve the functions. Taken together, the current study revealed an inhibitory role of SPATA2 on EMT and that SPATA2 could be a potential target for therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Testículo/metabolismo , Testículo/patologia , Tolerância a Radiação , Espermatogênese , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Proteínas
5.
Int Immunopharmacol ; 65: 159-173, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30316074

RESUMO

Gingivitis is evidenced by inflammation of the free gingiva, and still reversible. If left untreated, it may then progress to periodontitis. In the present study, the therapeutical effect of ketotifen fumarate on gingivitis was explored. Domestic cats with varying degrees of gingivitis naturally were enrolled in this study. Subgroups of animals were treated twice daily for one week with or without ketotifen fumarate (5 mg/kg). Effects of ketotifen fumarate were measured on gingival index, cells accumulation, mediators release, receptor-ligand interaction, oxidative stress, MAPK and NF-κB pathways, epithelial barrier and apoptosis. Ketotifen fumarate attenuated the initiation and progression of gingivitis, inhibited the infiltrations of mast cells, B lymphocytes, T lymphocytes, macrophages, neutrophils and eosinophils as well as the release of IgE, ß-hexosaminidase, tryptase, chymase, TNF-α, IL-4, and IL-13, influenced endothelial cells, fibroblasts and epithelial cells proliferation and apoptosis, and induced Th2 cells polarization, where ketotifen fumarate also might affect their interactions. Ketotifen fumarate reduced the oxidative stress, and inhibited NF-κB and p38 MAPK related with mast cells and macrophages accumulation. Ketotifen fumarate improved the aberrant expression of ZO-1 and inhibits the following apoptosis. On the other hand, these cells and mediators augmented functional attributes of them involving SCF/c-Kit, α4ß7/VCAM-1 and IL-8/IL-8RB interactions, thus creating a positive feedback loop to perpetuate gingivitis, where an inflammation microenvironment was modeled. Our results showed a previously unexplored therapeutic potential of ketotifen fumarate for gingivitis and further suggest that, in addition to biofilms, targeting inflammation microenvironment could be new strategy for the treatment of gingivitis/periodontitis.


Assuntos
Doenças do Gato/tratamento farmacológico , Gengivite/veterinária , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Cetotifeno/uso terapêutico , Animais , Linfócitos B/efeitos dos fármacos , Gatos , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gengivite/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA