Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancer Lett ; 590: 216844, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38582394

RESUMO

Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.


Assuntos
Chaperonina com TCP-1 , Glioblastoma , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras) , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Chaperonina com TCP-1/metabolismo , Chaperonina com TCP-1/genética , Linhagem Celular Tumoral , Estabilidade Proteica/efeitos dos fármacos , Artemisininas/farmacologia , Progressão da Doença , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
J Phys Chem Lett ; 15(12): 3354-3362, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38498427

RESUMO

This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.

3.
J Exp Clin Cancer Res ; 43(1): 25, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246990

RESUMO

BACKGROUND: Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS: GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS: Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS: DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.


Assuntos
Antagonistas de Dopamina , Glioblastoma , Glioma , Proteínas Proto-Oncogênicas c-myc , Animais , Humanos , Camundongos , Encéfalo , Proteínas Estimuladoras de Ligação a CCAAT/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dopamina , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Camundongos Nus , Família Multigênica , Receptores de Dopamina D1/antagonistas & inibidores , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Proteínas Proto-Oncogênicas c-myc/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo
5.
Neuro Oncol ; 26(4): 653-669, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38069906

RESUMO

BACKGROUND: Altered branched-chain amino acid (BCAA) metabolism modulates epigenetic modification, such as H3K27ac in cancer, thus providing a link between metabolic reprogramming and epigenetic change, which are prominent hallmarks of glioblastoma multiforme (GBM). Here, we identified mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), an enzyme involved in leucine degradation, promoting GBM progression and glioma stem cell (GSC) maintenance. METHODS: In silico analysis was performed to identify specific molecules involved in multiple processes. Glioblastoma multiforme cells were infected with knockdown/overexpression lentiviral constructs of HMGCL to assess malignant performance in vitro and in an orthotopic xenograft model. RNA sequencing was used to identify potential downstream molecular targets. RESULTS: HMGCL, as a gene, increased in GBM and was associated with poor survival in patients. Knockdown of HMGCL suppressed proliferation and invasion in vitro and in vivo. Acetyl-CoA was decreased with HMGCL knockdown, which led to reduced NFAT1 nuclear accumulation and H3K27ac level. RNA sequencing-based transcriptomic profiling revealed FOXM1 as a candidate downstream target, and HMGCL-mediated H3K27ac modification in the FOXM1 promoter induced transcription of the gene. Loss of FOXM1 protein with HMGCL knockdown led to decreased nuclear translocation and thus activity of ß-catenin, a known oncogene. Finally, JIB-04, a small molecule confirmed to bind to HMGCL, suppressed GBM tumorigenesis in vitro and in vivo. CONCLUSIONS: Changes in acetyl-CoA levels induced by HMGCL altered H3K27ac modification, which triggers transcription of FOXM1 and ß-catenin nuclear translocation. Targeting HMGCL by JIB-04 inhibited tumor growth, indicating that mediators of BCAA metabolism may serve as molecular targets for effective GBM treatment.


Assuntos
Aminopiridinas , Glioblastoma , Hidrazonas , Liases , Humanos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilação , beta Catenina/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Histonas/genética , Liases/genética , Liases/metabolismo
6.
Front Oncol ; 13: 1255164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736545

RESUMO

Introduction: Safranal is an active component of the traditional Tibetan medicine (TTM) saffron, which has potential anticancer activity. Methods and results: Here, we studied the therapeutic effect and mechanism of safranal on GBM. CCK-8, GBM-brain organoid coculture experiments and 3D tumour spheroid invasion assays showed that safranal inhibited GBM cell proliferation and invasion in vitro. Network pharmacology, RNA-seq, molecular docking analysis, western blotting, apoptosis, and cell cycle assays predicted and verified that safranal could promote GBM cell apoptosis and G2/M phase arrest and inhibit the PI3K/AKT/mTOR axis. In vivo experiments showed that safranal could inhibit GBM cell growth alone and in combination with TMZ. Conclusion: This study revealed that safranal inhibits GBM cell growth in vivo and in vitro, promotes GBM cell apoptosis and G2/M phase arrest, inhibits the PI3K/AKT/mTOR axis and cooperate with TMZ.

7.
RSC Adv ; 13(39): 27512-27519, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720837

RESUMO

Early diagnosis and treatment are of great significance for hindering the progression of brain disease. The limited effects of available treatments and poor prognosis are currently the most pressing problems faced by clinicians and their patients. Therefore, developing new diagnosis and treatment programs for brain diseases is urgently needed. Near-infrared (NIR)-light-responsive, lanthanide-doped upconversion nanoparticles (UCNPs) provide great advantages both in diagnosis and therapy. Hence, we synthesised nanoparticles comprised of a UCNPs core with surface functionalization. UCNPs@Au was used for NIR fluorescence imaging in the brain and inhibiting the growth of mouse glioma 261 (GL261) cells depending on photothermal properties. In addition, a UCNPs core and a mesoporous silica layer as the outer shell with a tannic acid-Al3+ ions (TA-Al) complex as a "gatekeeper" were used for pH-triggered doxorubicin/small interfering ribonucleic acid delivery in vitro. Based on our preliminary results, we expect to develop more multifunctional nanoscale diagnostic and therapeutic agents based on UCNPs for the diagnosis and treatment of brain diseases, including Alzheimer's disease, Parkinson's disease, and brain tumours.

9.
Front Mol Neurosci ; 16: 1198713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501725

RESUMO

Background: Gliomas are the most common primary tumors of the central nervous system, with high heterogeneity and highly variable survival rates. Accurate classification and prognostic assessment are key to the selection of treatment strategies. One hallmark of the tumor is resistance to cell death. PANoptosis, a novel mode of programmed cell death, has been frequently reported to be involved in the innate immunity associated with pathogen infection and played an important role in cancers. However, the intrinsic association of PANoptosis with glioma requires deeper investigation. Methods: The genetics and expression of the 17 reported PANoptosome-related genes were analyzed in glioma. Based on these genes, patients were divided into two subtypes by consensus clustering analysis. After obtaining the differentially expressed genes between clusters, a prognostic model called PANopotic score was constructed after univariate Cox regression, LASSO regression, and multivariate Cox regression. The expression of the 5 genes included in the PANopotic score was also examined by qPCR in our cohort. The prognostic differences, clinical features, TME infiltration status, and immune characteristics between PANoptotic clusters and score groups were compared, some of which even extended to pan-cancer levels. Results: Gene mutations, CNVs and altered gene expression of PANoptosome-related genes exist in gliomas. Two PANoptotic clusters were significantly different in prognosis, clinical features, immune characteristics, and mutation landscapes. The 5 genes included in the PANopotic score had significantly altered expression in glioma samples in our cohort. The high PANoptotic score group was inclined to show an unfavorable prognosis, lower tumor purity, worse molecular genetic signature, and distinct immune characteristics related to immunotherapy. The PANoptotic score was considered as an independent prognostic factor for glioma and showed superior prognostic assessment efficacy over several reported models. PANopotic score was included in the nomogram constructed for the potential clinical prognostic application. The associations of PANoptotic score with prognostic assessment and tumor immune characteristics were also reflected at the pan-cancer level. Conclusion: Molecular subtypes of glioma based on PANoptosome-related genes were proposed and PANoptotic score was constructed with different clinical characteristics of anti-tumor immunity. The potential intrinsic association between PANoptosis and glioma subtypes, prognosis, and immunotherapy was revealed.

11.
Front Immunol ; 13: 1025286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341396

RESUMO

Glioblastoma multiforme (GBM) is a common central neural system malignant tumor among adults. Alongside its microscopic spread, immunosuppression in the tumor microenvironment also induces its refractoriness, which makes immunotherapy for GBM particularly important. Unfortunately, traditional immune checkpoint inhibitors (ICIs) often show limited therapeutic effects in GBM clinical trials, and new therapeutic strategies or targets are urgently needed. TNFSF14/LIGHT is a novel immune checkpoint molecule that plays essential roles in both innate and acquired immunity. Despite recent advances in our understanding of the function of TNFSF14/LIGHT in a variety of cancer types, the clinical and immunological importance of TNFSF14/LIGHT in human gliomas has not been fully explained. Here, we employed a comprehensive in silico analysis with publicly available data to analyze the molecular and immune characteristics of TNFSF14/LIGHT to explore its feasibility as an immunotherapy target. Totally, 2215 glioma cases were enrolled in the current study. Immunohistochemistry staining based on patient tissues (n = 34) was performed for the validation. TNFSF14/LIGHT was expressed higher in higher-WHO-grade gliomas and mesenchymal subtypes, and it was sensitive as a prognostic marker in GBM and low-grade glioma (LGG). A nomogram prognostic model was established based on TNFSF14/LIGHT expression together with other risk factors. Additionally, Gene Ontology and pathway analysis revealed that TNFSF14/LIGHT participated in T-cell activities and inflammatory processes. Moreover, analysis based on the structure and interactions of TNFSF14/LIGHT revealed its mutation sites in tumors as well as crucial interacting proteins. Analysis of IMvigor210 indicated the role of TNFSF14/LIGHT in immunotherapy. Altogether, our results reveal an underlying role of TNFSF14/LIGHT as an immunotherapy target in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Glioblastoma/terapia , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
12.
Front Cell Neurosci ; 16: 944682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060273

RESUMO

High-grade glioma is characterized by cell heterogeneity, gene mutations, and poor prognosis. Abnormal copper homeostasis affects the pathogenesis of glioma, but the underlying mechanisms and involved proteins are unknown. Here, we selected 90 copper-related proteins and verified their expression differences in glioma and normal tissues in the TCGA cohort followed by GO and KEGG clustering analyses. We then developed and validated a prognostic model. Moreover, we examined the mutation burden of copper-related proteins and discussed the differences in the immune microenvironment in the high- and low-risk groups. Furthermore, we focused on STEAP2 and demonstrated that STEAP2 expression was relatively low in tumor tissues compared to normal tissues, implying a favorable prognosis. Our findings provide a foundation for future research targeting copper-related proteins and their immune microenvironment to improve prognosis and responses to immunotherapy.

13.
Theranostics ; 12(12): 5451-5469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910786

RESUMO

Background: Splicing factors are essential for nascent pre-mRNA processing and critical in cancer progression, suggesting that proteins with splicing functions represent potential molecular targets for cancer therapy. Here, we investigate the role of splicing factors in glioblastoma multiforme (GBM) progression and the possibility of targeting them for the treatment of the disease. Methods: The TCGA and CGGA public databases were used to screen for differentially expressed mRNA splicing factors. Immunohistochemistry and qRT-PCR were used to analyze the expression of non-POU domain-containing octamer-binding protein (NONO), a Drosophila behavior human splicing (DBHS) protein. Knockdown/overexpression of NONO with siRNA and lentiviral expression constructs was used to examine cell growth, apoptosis, and invasion in GBM cells. RNA sequencing was used to identify potential downstream molecular targets of NONO. RIP-PCR and RNA pulldown were used to determine the interaction between NONO and pre-mRNA. JC-1 staining and the seahorse assay were performed to assess redox homeostasis. Results: Expression of NONO was increased in GBM samples and associated with poor survival in patients (P = 0.04). Knockdown of NONO suppressed GBM growth, and overexpression of NONO promoted GBM tumorigenesis in vitro and in vivo. RNA sequencing-based transcriptomic profiling confirmed that knockdown of NONO in U251 and P3 cells resulted in global intron retention of pre-mRNA and led to abnormal splicing of specific pre-mRNAs for GPX1 and CCN1. NONO bound to a consensus motif in the intron of GPX1 pre-mRNA in association with another DBHS protein family member, PSPC1. Knockdown of NONO impaired tumor growth, invasion, and redox homeostasis through aberrant splicing of GPX1. Finally, Auranofin, a small molecule inhibitor of NONO, suppressed GBM tumor growth in an orthotopic xenograft model in mice. Conclusions: We demonstrated that intron retention was a critical alternative RNA splicing event to occur in GBM progression, and that NONO was a key regulator of mRNA splicing in GBM. Targeting NONO represents a novel, potential therapeutic strategy for GBM treatment.


Assuntos
Proteínas de Ligação a DNA , Glioblastoma , Íntrons , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Glioblastoma/patologia , Glutationa Peroxidase , Humanos , Íntrons/genética , Camundongos , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Glutationa Peroxidase GPX1
14.
Front Behav Neurosci ; 16: 817859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615566

RESUMO

Background: Loss of estrogen due to menopause or ovarian resection is involved in the development of anxiety, which negatively impacts work productivity and quality of life. Estrogen modulates mood by binding to estrogen receptors in the brain. Estrogen receptor beta (ERß) is highly expressed in the lateral habenula (LHb), a key site for controlling the activities of dopaminergic neurons in the ventral tegmental area (VTA) and serotoninergic neurons in the dorsal raphe nucleus (DRN) that are known to be involved in anxiety. Methods: In this study, we examined the role of LHb in the anxiolytic-like effect of estrogen in ovariectomized (OVX) rats. The establishment of OVX anxiety model was validated in behavioral tests, including elevated plus maze (EPM) and mirror chamber maze (MCM) tasks. The expression of c-Fos in the LHb neurons was analyzed by immunohistochemistry, and monoamine neurotransmitter levels in related nuclei were analyzed using high-performance liquid chromatography (HPLC). Results: Estrogen-treated OVX rats showed a lower degree of anxiety-like behavior than OVX rats. OVX rats showed anxiety-like behavior and low monoamine levels in the DRN and VTA compared with sham operated and estrogen-treated OVX rats. c-Fos expression in the LHb was higher than that in the sham operated and estrogen-treated OVX rats. Intra-LHb injection of the ERß-selective agonist diarylprepionitrile (DPN) reduced expression of c-Fos (a neuronal activity marker) and anxiety-like behavior in OVX rats, but not in normal rats, as evidenced by increased time spent in EPM open areas and the MCM mirror chamber. These changes coincided with higher levels of serotonin and dopamine in the DRN and higher dopamine levels in the VTA in OVX rats receiving intra-LHb DPN compared with those receiving vehicle injection. Conclusion: These results suggest that OVX-induced anxiety-like behavior may be associated with increased LHb activity. DPN may inhibit LHb activity to improve anxiety-like behavior in OVX rats by increasing monoamine neurotransmitter levels in the DRN and VTA.

15.
J Transl Med ; 19(1): 505, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886858

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor of the central nervous system. Recent studies have reported the crucial functions of Tripartite Motif Containing 24 (TRIM24) in promoting cancer progression of GBM. However, it remains unclear if TRIM24 is an attractive druggable target for therapeutic intervention in GBM. We therefore performed a series of experiments, aiming to verify whether specific TRIM24 inhibition suppresses GBM malignant functions using dTRIM24 and IACS-9571, two novel selective TRIM24 antagonists. Our data showed that TRIM24 inhibitors serve as effective agents for inhibiting cell propagation and invasion of several patient-derived GBM stem cells (GSCs), and these effects are mediated partially through suppression of the TRIM24-SOX2 axis. This study provides novel insight into the TRIM24-based druggable dependencies, important for developing effective therapeutic strategies for brain tumors.


Assuntos
Neoplasias Encefálicas , Proteínas de Transporte/antagonistas & inibidores , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células Tumorais Cultivadas
16.
Oncol Lett ; 21(4): 282, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732358

RESUMO

Lung adenocarcinoma (LUAD) has been considered as the most common cause of cancer-associated mortality. Radiotherapy resistance is one of the main reasons for LUAD treatment failure. The microRNA (miR)-101-3p has been previously reported to function as a tumor suppressor in several types of cancer, including LUAD. The present study aimed to explore the role and mechanism of miR-101-3p on radioresistance of lung adenocarcinoma cells through bioinformatics analysis and biological experiments. Based on the analysis of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data, it was demonstrated that the expression of miR-101-3p was low in LUAD tissues compared with normal lung tissues and was associated with poor prognosis of patients with LUAD. The results of the CCK-8 assay, colony formation assay, immunofluorescence staining, caspase-3 activity assay and western blotting demonstrated that miR-101-3p overexpression sensitized LUAD cells to ionizing radiation by decreasing the abilities of LUAD cell proliferation, colony formation, DNA damage repair and increasing caspase-3 activity and apoptosis of LUAD cells following ionizing radiation. Furthermore, according to bioinformatics analysis and luciferase assay, baculoviral IAP repeat containing 5 (BIRC5) was identified as a direct target of miR-101-3p. Increased BIRC5 expression reversed the miR-101-3p-mediated increase in LUAD cell radiotherapy sensitivity. Taken together, the results of the present study demonstrated that miR-101-3p may be considered as a potential target that can enhance LUAD cell sensitivity to radiotherapy, which may provide a new strategy to improve therapy in patients with LUAD.

17.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32342983

RESUMO

Preeclampsia (PE), a common obstetrical disorder, is characterized by impaired migration and invasion abilities of trophoblastic cells. MicroRNA-183-5p (miR-183) was reported to regulate cell migration and invasion in various types of human cancers; however, its role in the pathogenesis of PE remains elusive. Herein, we investigated the role of miR-183 in HTR-8/SVneo trophoblast cells invasion and migration and explored the underlying mechanism. Our results showed that miR-183 was significantly up-regulated in placental tissues from pregnant women compared with that in normal pregnant women. Overexpression of miR-183 inhibited proliferation, migration and invasion, as well as induced apoptosis in HTR-8/SVneo cells. Otherwise, down-regulation of miR-183 achieved the opposite effects. Bioinformatics prediction and luciferase reporter assay confirmed that matrix metalloproteinase-9 (MMP-9) is a target of miR-183. In addition, MMP-9 expression was significantly down-regulated, and inversely correlated with the miR-183 level in placental tissues from pregnant women with severe PE. Down-regulation of MMP-9 suppressed the trophoblast cell invasion and migration, whereas overexpression of MMP-9 promoted cell invasion and migration in HTR-8/SVneo cells. More importantly, up-regulation of MMP-9 reversed the inhibitory effects of miR-183 on cell invasion and migration in trophoblast cells. Collectively, our findings suggested that miR-183 may play critical roles in the pathogenesis of PE and serve as a potential biomarker for severe PE.


Assuntos
Movimento Celular , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/metabolismo , Pré-Eclâmpsia/enzimologia , Trofoblastos/enzimologia , Adulto , Apoptose , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Transdução de Sinais , Trofoblastos/patologia , Adulto Jovem
18.
Cancer Manag Res ; 11: 6175-6184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308753

RESUMO

BACKGROUND: Gastric cancer is still a common cancer worldwide. Investigation of potential plasma biomarkers for gastric cancer diagnosis is essential for prevention strategies and early intervention for gastric cancer-control planning. OBJECTIVES: This study was aimed to explore the lncRNAs' promoter of CDKN1A antisense DNA-damage-activated RNA (PANDAR), FOXD2-AS1, and SMARCC2 as potential novel diagnostic biomarkers for gastric cancer. METHOD: 109 gastric cancer patients and 106 healthy controls were involved in this study. Plasma lncRNAs PANDAR, FOXD2-AS1, and SMARCC2 were detected by real-time PCR. Student's t-test, Mann-Whitney U test, and Chi-square test were used to verify the differences of clinical variables between two groups. Receiver operating characteristic curve (ROC) was used to evaluate the diagnostic value of every biomarker. Multivariable analysis of risk factors for gastric cancer was performed using logistic regression analysis. RESULTS: There were significant differences in age, gender, carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 153 between gastric cancer and healthy controls (P<0.05). Compared with healthy subjects, the levels of plasma lncRNAs PANDAR, FOXD2-AS1, and SMARCC2 were all significantly higher in gastric cancer patients (P<0.05). These lncRNAs were significantly associated with clinicopathological parameters of gastric cancer, like pathological differentiation, TNM stage, and/or lymph nodes metastasis, and/or invasion depth (P<0.05). The AUC for lncRNA PANDAR was 0.767, for FOXD2-AS1 was 0.700, for SMARCC2 was 0.748, and the AUC of the combinative diagnostic value of these three lncRNAs was 0.839. Adjusted by other variables, these lncRNAs' expressions were significantly associated with gastric cancer. CONCLUSIONS: Plasma lncRNAs PANDAR, FOXD2-AS1, and SMARCC2 might be appropriate diagnostic biomarkers for gastric cancer.

19.
Food Nutr Res ; 60: 32010, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27616738

RESUMO

BACKGROUND: Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. OBJECTIVE: To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. DESIGN: A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. RESULTS: Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO) level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34) showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58), which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet. CONCLUSIONS: The intake of spinach nitrate can augment NO status, improve lipid homeostasis, relieve inflammation, and enhance endothelial function, suggesting that spinach is promising dietary supplements for insulin resistance prevention.

20.
Food Funct ; 6(2): 513-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492718

RESUMO

The present study reports the phenolic profiles and antioxidant and hepatoprotective properties of Red Fuji apple peel polyphenolic extract (APP) and its flesh polyphenolic extract (AFP) against CCl4-induced acute hepatic damage in mice. It was found that the polyphenol and flavonoid contents of APP were significantly higher than those of AFP. APP was shown to exhibit stronger in vitro antioxidant activities than AFP in a dose-dependent manner. Administration of APP at 250 and 500 mg per kg bw to mice ahead of CCl4 injection was further shown to exhibit stronger in vivo protective effects than those of AFP and could observably antagonize the CCl4-induced increase in serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities and hepatic malondialdehyde levels, and prevent the CCl4-caused decrease in antioxidant superoxide dismutase and glutathione peroxidase activities, compared to CCl4-treated mice (p < 0.05). This finding demonstrates that the polyphenolic extract from apple, particularly its peel, can be explored as a chemopreventive or chemotherapeutic agent against oxidative-stress-related liver disorders.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Malus/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Peso Corporal , Tetracloreto de Carbono/toxicidade , Frutas/química , Glutationa Peroxidase/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/análise , Polifenóis/análise , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA