Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci China Life Sci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679670

RESUMO

Betaine-homocysteine methyltransferase (BHMT) regulates protein methylation and is correlated with tumorigenesis; however, the effects and regulation of BHMT in hepatocarcinogenesis remain largely unexplored. Here, we determined the clinical significance of BHMT in the occurrence and progression of hepatocellular carcinoma (HCC) using tissue samples from 198 patients. BHMT was to be frequently found (86.6%) expressed at relatively low levels in HCC tissues and was positively correlated with the overall survival of patients with HCC. Bhmt overexpression effectively suppressed several malignant phenotypes in hepatoma cells in vitro and in vivo, whereas complete knockout of Bhmt (Bhmt-/-) produced the opposite effect. We combined proteomics, metabolomics, and molecular biological strategies and detected that Bhmt-/- promoted hepatocarcinogenesis and tumor progression by enhancing the activity of glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolism in DEN-induced HCC mouse and subcutaneous tumor-bearing models. In contrast, restoration of Bhmt with an AAV8-Bhmt injection or pharmacological inhibition of G6PD attenuated hepatocarcinogenesis. Additionally, coimmunoprecipitation identified monomethylated modifications of the G6PD, and BHMT regulated the methylation of G6PD. Protein sequence analysis, generation and application of specific antibodies, and site-directed mutagenesis indicated G6PD methylation at the arginine residue 246. Furthermore, we established bidirectionally regulated BHMT cellular models combined with methylation-deficient G6PD mutants to demonstrate that BHMT potentiated arginine methylation of G6PD, thereby inhibiting G6PD activity, which in turn suppressed hepatocarcinogenesis. Taken together, this study reveals a new methylation-regulatory mechanism in hepatocarcinogenesis owing to BHMT deficiency, suggesting a potential therapeutic strategy for HCC treatment.

2.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496556

RESUMO

Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE: Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk.

3.
Cell Biol Int ; 48(1): 31-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37655528

RESUMO

Arachidonic acid metabolism plays a crucial role in the development and progression of inflammatory and metabolic liver diseases. However, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated the expression of key genes involved in the arachidonic acid metabolism pathway in HCC using a combination of bioinformatics, proteomics and immunohistochemistry analyses. Through a comprehensive analysis of publicly available datasets, clinical HCC tissues, and tissue microarrays, we compared the expression of hepatic arachidonic acid metabolic genes. We observed significant downregulation of cytochrome P450 (CYP450) pathway genes at both the messenger RNA and protein levels in HCC tissues compared to normal liver tissues. Furthermore, we observed a strong correlation between the deregulation of the arachidonic acid metabolism CYP450 pathway and the pathological features and prognosis of HCC. Specifically, the expression of CYP2C8/9/18/19 was significantly correlated with pathological grade (r = -.484, p < .0001), vascular invasion (r = -.402, p < .0001), aspartate transaminase (r = -.246, p = .025), gamma-glutamyl transpeptidase (r = -.252, p = .022), alkaline phosphatase (r = -.342, p = .002), alpha-fetoprotein (r = -.311, p = .004) and carbohydrate antigen 19-9 (r = -.227, p = .047). Moreover, we discovered a significant association between CYP450 pathway activity and vascular invasion in HCC. Collectively, these data indicate that arachidonic acid CYP450 metabolic pathway deregulation is implicated in HCC progression and may be a potential predictive factor for early recurrence in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Ácido Araquidônico , Sistema Enzimático do Citocromo P-450/genética
4.
Mol Carcinog ; 62(7): 963-974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042569

RESUMO

Abnormal cholesterol synthesis plays a crucial role in the development of hepatocellular carcinoma (HCC). Sterol regulatory element-binding protein 2 (SREBP2) is involved in cholesterol synthesis by translocating to the nucleus where it stimulates the transcription of genes encoding enzymes involved in the cholesterol synthesis pathway. However, the function and regulatory mechanism of SREBP2 in HCC remain unclear. In this study, we aimed to gain a better understanding of the effects of SREBP2 and its functional mechanism in HCC. In 20 HCC patients, we demonstrated that SREBP2 was highly expressed in HCC specimens, relative to their peritumoral tissue, and that higher expression correlated positively with a poor prognosis in these patients. Moreover, higher SREBP2 levels in the nucleus enhanced the occurrence of microvascular invasion, whereas inhibition of SREBP2 nuclear translocation by fatostatin markedly suppressed the migration and invasion of HCC cells via the epithelial-mesenchymal transition (EMT) process. The effects of SREBP2 were subject to functional activity of large tumor suppressor kinase (LATS), whereas inhibition of LATS promoted nuclear translocation of SREBP2, as observed in hepatoma cells and a subset of subcutaneous tumor samples from nude mice. In conclusion, SREBP2 enhances the invasion and metastasis of HCC cells by promoting EMT, which can be strengthened by the repression of LATS. Therefore, SREBP2 may serve as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Camundongos Nus , Humanos
5.
Drug Des Devel Ther ; 16: 863-871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378926

RESUMO

Purpose: Hepatocellular carcinoma (HCC), has a very high mortality rate and is the most common type of liver cancer. Clotrimazole, a traditional antifungal drug, has garnered considerable attention as a therapeutic strategy for HCC. However, its effects against the migration and invasion of HCC cells as well as the associated underlying mechanisms remain unclear. Therefore, in this study, we investigated its effects on HCC and attempted to elucidate the underlying molecular mechanisms. Methods: CCK-8 was used to investigate the inhibitory effect of clotrimazole on the proliferation of different types of HCC cells, and wound healing and transwell assays were performed to investigate its inhibitory effect on the invasion and migration of the HCC cells. Further, western blotting was employed to detect changes in the expression levels of epithelial mesenchymal transition (EMT)-related proteins, extracellular-regulated protein kinases (ERK), p-ERK, p65, and p-p65. We also used ERK activators in combination with clotrimazole to treat the HCC cell lines. Results: Clotrimazole inhibited the invasion and migration of HCC cells, and mechanistically, it exerted these anti-tumor effects via EMT by repressing ERK phosphorylation. Conclusion: These findings suggest that clotrimazole inhibits HCC metastasis by repressing EMT in an ERK dephosphorylation-dependent manner.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Clotrimazol/farmacologia , Clotrimazol/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Quinases , Transdução de Sinais
6.
J Gene Med ; 23(8): e3347, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33894044

RESUMO

BACKGROUND: The risk of chronic hepatitis B (CHB) infection is influenced by aberrant DNA methylation and altered nucleotide synthesis and repair, possibly caused by polymorphic variants in one-carbon metabolism genes. In the present study, we investigated the relationship between polymorphisms belonging to the one-carbon metabolic pathway and CHB infection. METHODS: A case-control study using 230 CHB patients and 234 unrelated healthy controls was carried out to assess the genetic association of 24 single nucleotide polymorphisins (SNPs) determined by mass spectrometry. RESULTS: Three SNPs, comprising rs10717122 and rs2229717 in serine hydroxymethyltransferase1/2 (SHMT2) and rs585800 in betaine-homocysteine S-methyltransferase (BHMT), were associated with the risk of CHB. Patients with DEL allele, DEL.DEL and DEL.T genotypes of rs10717122 had a 1.40-, 2.00- and 1.83-fold increased risk for CHB, respectively. Cases inheriting TA genotype of rs585800 had a 2.19-fold risk for CHB infection. The T allele of rs2229717 was less represented in the CHB cases (odds ratio = 0.66, 95% confidence interval = 0.48-0.92). The T allele of rs2229717 was less in patients with a low hepatitis B virus-DNA level compared to the control group (odds ratio = 0.49, 95% confidence interval = 0.25-0.97) and TT genotype of rs2229717 had a significant correlation with hepatitis B surface antigen level (p = 0.0195). Further gene-gene interaction analysis showed that subjects carrying the rs10717122 DEL.DEL/DEL.T and rs585800 TT/TA genotypes had a 2.74-fold increased risk of CHB. CONCLUSIONS: The results of the present study suggest that rs10717122, rs585800 and rs2229717 and gene-gene interactions of rs10717122 and rs585800 affect the outcome of CHB infection, at the same time as indicating their usefulness as a predictive and diagnostic biomarker of CHB infection.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Carbono/metabolismo , Glicina Hidroximetiltransferase/genética , Hepatite B Crônica/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Adenosil-Homocisteinase/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Predisposição Genética para Doença , Glicina N-Metiltransferase/genética , Hepatite B Crônica/metabolismo , Humanos , Masculino , Metionina Adenosiltransferase/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética
7.
Cancer Lett ; 482: 8-18, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278815

RESUMO

Hepatocellular carcinoma (HCC), a type of malignant liver tumor, has a grim prognosis. As a functional protein, synaptopodin-2 (SYNPO2) has been associated with malignancy; however, the expression profile and function of SYNPO2 in HCC remains unknown. Herein, we revealed that SYNPO2 was transcriptionally downregulated in HCC tissues from both The Cancer Genome Atlas cohort and our cohort, and was also decreased at the translational level as determined by western blotting and immunohistochemical staining. Furthermore, reduced SYNPO2 expression correlated significantly with short overall survival and recurrence free survival of HCC patients. Restoring SYNPO2 expression inhibited the proliferation and aggressiveness of hepatocarcinoma cells. Mechanistically, increasing the ratio of cytoplasmic SYNPO2 to nuclear SYNPO2 was positively associated with recurrence rate in HCC patients; calcineurin (CaN) activity positively correlated with cytoplasmic SYNPO2 levels in HCC tissues; and nuclear-cytoplasmic translocation of SYNPO2 was induced by CaN to facilitate metastasis of HCC through assembly of peripheral actin bundles. In short, our findings uncover a novel role of SYNPO2 in HCC metastasis via the CaN/SYNPO2/F-actin axis, and indicate that SYNPO2 may serve as a possible prognostic marker and novel therapeutic target.


Assuntos
Calcineurina/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Citoplasma/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Prognóstico , Transporte Proteico , Análise de Sobrevida
8.
PLoS Biol ; 17(4): e3000044, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964858

RESUMO

Many bacterial pathogens hijack macrophages to egress from the port of entry to the lymphatic drainage and/or bloodstream, causing dissemination of life-threatening infections. However, the underlying mechanisms are not well understood. Here, we report that Salmonella infection generates directional electric fields (EFs) in the follicle-associated epithelium of mouse cecum. In vitro application of an EF, mimicking the infection-generated electric field (IGEF), induces directional migration of primary mouse macrophages to the anode, which is reversed to the cathode upon Salmonella infection. This infection-dependent directional switch is independent of the Salmonella pathogenicity island 1 (SPI-1) type III secretion system. The switch is accompanied by a reduction of sialic acids on glycosylated surface components during phagocytosis of bacteria, which is absent in macrophages challenged by microspheres. Moreover, enzymatic cleavage of terminally exposed sialic acids reduces macrophage surface negativity and severely impairs directional migration of macrophages in response to an EF. Based on these findings, we propose that macrophages are attracted to the site of infection by a combination of chemotaxis and galvanotaxis; after phagocytosis of bacteria, surface electrical properties of the macrophage change, and galvanotaxis directs the cells away from the site of infection.


Assuntos
Trato Gastrointestinal/imunologia , Macrófagos/fisiologia , Resposta Táctica/fisiologia , Animais , Proteínas de Bactérias , Movimento Celular/fisiologia , Condutividade Elétrica , Eletricidade , Epitélio/imunologia , Epitélio/metabolismo , Feminino , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Salmonella/patogenicidade , Infecções por Salmonella/metabolismo , Infecções por Salmonella/fisiopatologia
9.
J Cell Physiol ; 233(3): 2378-2385, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28749047

RESUMO

Stationary symmetrical fish keratocyte cells break symmetry and become motile spontaneously but slowly. We found that applying electric field (EF) accelerates the polarization by an order of magnitude. While spontaneously polarized cells move persistently for hours, the EF-induced polarity is lost in a majority of cells when the EF is switched off. However, if the EF is applied for a long time and then switched off, the majority of cell move stably. Myosin inhibition abolishes spontaneous polarization, but does not slow down EF-induced polarization, and after the EF is turned off, motility does not stop; however, the cell movements are erratic. Our results suggest that the EF rapidly polarizes the cells, but that resulting polarization becomes stable slowly, and that the EF bypasses the requirement for myosin action in motility initiation.


Assuntos
Escamas de Animais/metabolismo , Movimento Celular , Polaridade Celular , Estimulação Elétrica , Células Epiteliais/metabolismo , Miosinas/metabolismo , Escamas de Animais/citologia , Animais , Células Cultivadas , Ciclídeos , Fenótipo , Fatores de Tempo
10.
J Cell Physiol ; 231(6): 1291-300, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26517849

RESUMO

Cell fragments devoid of the nucleus and major organelles are found in physiology and pathology, for example platelets derived from megakaryocytes, and cell fragments from white blood cells and glioma cells. Platelets exhibit active chemotaxis. Fragments from white blood cells display chemotaxis, phagocytosis, and bactericidal functions. Signaling mechanisms underlying migration of cell fragments are poorly understood. Here we used fish keratocyte fragments and demonstrated striking differences in signal transduction in migration of cell fragments and parental cells in a weak electric field. cAMP or cGMP agonists completely abolished directional migration of fragments, but had no effect on parental cells. The inhibition effects were prevented by pre-incubating with cAMP and cGMP antagonists. Blocking cAMP and cGMP downstream signaling by inhibition of PKA and PKG also recovered fragment galvanotaxis. Both perturbations confirmed that the inhibitory effect was mediated by cAMP or cGMP signaling. Inhibition of cathode signaling with PI3K inhibitor LY294002 also prevented the effects of cAMP or cGMP agonists. Our results suggest that cAMP and cGMP are essential for galvanotaxis of cell fragments, in contrast to the signaling mechanisms in parental cells.


Assuntos
Movimento Celular , Micropartículas Derivadas de Células/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fibroblastos/metabolismo , Sistemas do Segundo Mensageiro , Animais , Movimento Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/efeitos dos fármacos , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Fibroblastos/efeitos dos fármacos , Peixes , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo
11.
Nat Commun ; 6: 8532, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449415

RESUMO

Weak electric fields guide cell migration, known as galvanotaxis/electrotaxis. The sensor(s) cells use to detect the fields remain elusive. Here we perform a large-scale screen using an RNAi library targeting ion transporters in human cells. We identify 18 genes that show either defective or increased galvanotaxis after knockdown. Knockdown of the KCNJ15 gene (encoding inwardly rectifying K(+) channel Kir4.2) specifically abolishes galvanotaxis, without affecting basal motility and directional migration in a monolayer scratch assay. Depletion of cytoplasmic polyamines, highly positively charged small molecules that regulate Kir4.2 function, completely inhibits galvanotaxis, whereas increase of intracellular polyamines enhances galvanotaxis in a Kir4.2-dependent manner. Expression of a polyamine-binding defective mutant of KCNJ15 significantly decreases galvanotaxis. Knockdown or inhibition of KCNJ15 prevents phosphatidylinositol 3,4,5-triphosphate (PIP3) from distributing to the leading edge. Taken together these data suggest a previously unknown two-molecule sensing mechanism in which KCNJ15/Kir4.2 couples with polyamines in sensing weak electric fields.


Assuntos
Poliaminas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Linhagem Celular Tumoral , Eletricidade , Humanos , Transporte de Íons , Canais de Potássio Corretores do Fluxo de Internalização/genética
12.
Sci Signal ; 8(378): ra50, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26012633

RESUMO

Directional cell migration in an electric field, a phenomenon called galvanotaxis or electrotaxis, occurs in many types of cells, and may play an important role in wound healing and development. Small extracellular electric fields can guide the migration of amoeboid cells, and we established a large-scale screening approach to search for mutants with electrotaxis phenotypes from a collection of 563 Dictyostelium discoideum strains with morphological defects. We identified 28 strains that were defective in electrotaxis and 10 strains with a slightly higher directional response. Using plasmid rescue followed by gene disruption, we identified some of the mutated genes, including some previously implicated in chemotaxis. Among these, we studied PiaA, which encodes a critical component of TORC2, a kinase protein complex that transduces changes in motility by activating the kinase PKB (also known as Akt). Furthermore, we found that electrotaxis was decreased in mutants lacking gefA, rasC, rip3, lst8, or pkbR1, genes that encode other components of the TORC2-PKB pathway. Thus, we have developed a high-throughput screening technique that will be a useful tool to elucidate the molecular mechanisms of electrotaxis.


Assuntos
Dictyostelium , Complexos Multiproteicos , Proteínas Proto-Oncogênicas c-akt , Proteínas de Protozoários , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR , Dictyostelium/genética , Dictyostelium/metabolismo , Técnicas de Silenciamento de Genes , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
PLoS One ; 8(4): e61509, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585907

RESUMO

Transepithelial potential (TEP) is the voltage across a polarized epithelium. In epithelia that have active transport functions, the force for transmembrane flux of an ion is dictated by the electrochemical gradient in which TEP plays an essential role. In epithelial injury, disruption of the epithelial barrier collapses the TEP at the wound edge, resulting in the establishment of an endogenous wound electric field (∼100 mV/mm) that is directed towards the center of the wound. This endogenous electric field is implicated to enhance wound healing by guiding cell migration. We thus seek techniques to enhance the TEP, which may increase the wound electric fields and enhance wound healing. We report a novel technique, termed synchronization modulation (SM) using a train of electric pulses to synchronize the Na/K pump activity, and then modulating the pumping cycles to increase the efficiency of the Na/K pumps. Kidney epithelial monolayers (MDCK cells) maintain a stable TEP and transepithelial resistance (TER). SM significantly increased TEP over four fold. Either ouabain or digoxin, which block Na/K pump, abolished SM-induced TEP increases. In addition to the pump activity, basolateral distribution of Na/K pumps is essential for an increase in TEP. Our study for the first time developed an electrical approach to significantly increase the TEP. This technique targeting the Na/K pump may be used to modulate TEP, and may have implication in wound healing and in diseases where TEP needs to be modulated.


Assuntos
Estimulação Elétrica/métodos , Potenciais da Membrana/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Digoxina/farmacologia , Cães , Inibidores Enzimáticos/farmacologia , Transporte de Íons/efeitos dos fármacos , Células Madin Darby de Rim Canino , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Ouabaína/farmacologia , Transporte Proteico/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Cicatrização/fisiologia , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
14.
Curr Biol ; 23(7): 569-74, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23541726

RESUMO

Sensing of an electric field (EF) by cells-galvanotaxis-is important in wound healing [1], development [2], cell division, nerve growth, and angiogenesis [3]. Different cell types migrate in opposite directions in EFs [4], and the same cell can switch the directionality depending on conditions [5]. A tug-of-war mechanism between multiple signaling pathways [6] can direct Dictyostelium cells to either cathode or anode. Mechanics of motility is simplest in fish keratocytes, so we turned to keratocytes to investigate their migration in EFs. Keratocytes sense electric fields and migrate to the cathode [7, 8]. Keratocyte fragments [9, 10] are the simplest motile units. Cell fragments from leukocytes are able to respond to chemotactic signals [11], but whether cell fragments are galvanotactic was unknown. We found that keratocyte fragments are the smallest motile electric field-sensing unit: they migrate to the anode, in the opposite direction of whole cells. Myosin II was essential for the direction sensing of fragments but not for parental cells, while PI3 kinase was essential for the direction sensing of whole cells but not for fragments. Thus, two signal transduction pathways, one depending on PI3K, another on myosin, compete to orient motile cells in the electric field. Galvanotaxis is not due to EF force and does not depend on cell or fragment size. We propose a "compass" model according to which protrusive and contractile actomyosin networks self-polarize to the front and rear of the motile cell, respectively, and the electric signal orients both networks toward cathode with different strengths.


Assuntos
Movimento Celular/fisiologia , Ceratócitos da Córnea/fisiologia , Eletricidade , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Cromonas , Ciclídeos , Ceratócitos da Córnea/metabolismo , Dimetil Sulfóxido , Estimulação Elétrica , Campos Eletromagnéticos , Compostos Heterocíclicos de 4 ou mais Anéis , Concentração de Íons de Hidrogênio , Microtúbulos/metabolismo , Morfolinas , Miosinas/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase
15.
Cell Microbiol ; 15(6): 942-960, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23227931

RESUMO

Brucella are facultative intracellular bacteria that cause chronic infections by limiting innate immune recognition. It is currently unknown whether Brucella FliC flagellin, the monomeric subunit of flagellar filament, is sensed by the host during infection. Here, we used two mutants of Brucella melitensis, either lacking or overexpressing flagellin, to show that FliC hinders bacterial replication in vivo. The use of cells and mice genetically deficient for different components of inflammasomes suggested that FliC was a target of the cytosolic innate immune receptor NLRC4 in vivo but not in macrophages in vitro where the response to FliC was nevertheless dependent on the cytosolic adaptor ASC, therefore suggesting a new pathway of cytosolic flagellin sensing. However, our work also suggested that the lack of TLR5 activity of Brucella flagellin and the regulation of its synthesis and/or delivery into host cells are both part of the stealthy strategy of Brucella towards the innate immune system. Nevertheless, as a flagellin-deficient mutant of B. melitensis wasfound to cause histologically demonstrable injuries in the spleen of infected mice, we suggested that recognition of FliC plays a role in the immunological stand-off between Brucella and its host, which is characterized by a persistent infection with limited inflammatory pathology.


Assuntos
Brucella melitensis/patogenicidade , Brucelose/fisiopatologia , Flagelina/imunologia , Flagelina/metabolismo , Imunidade Inata/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Brucella melitensis/imunologia , Brucella melitensis/metabolismo , Brucelose/metabolismo , Brucelose/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Flagelina/genética , Humanos , Técnicas In Vitro , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação/genética , Baço/microbiologia , Baço/patologia , Receptor 5 Toll-Like/metabolismo
16.
J Appl Physiol (1985) ; 111(4): 1031-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21719726

RESUMO

Damage to the respiratory epithelium is one of the most critical steps to many life-threatening diseases, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. The mechanisms underlying repair of the damaged epithelium have not yet been fully elucidated. Here we provide experimental evidence suggesting a novel mechanism for wound repair: endogenous electric currents. It is known that the airway epithelium maintains a voltage difference referred to as the transepithelial potential. Using a noninvasive vibrating probe, we demonstrate that wounds in the epithelium of trachea from rhesus monkeys generate significant outward electric currents. A small slit wound produced an outward current (1.59 µA/cm(2)), which could be enhanced (nearly doubled) by the ion transport stimulator aminophylline. In addition, inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) with CFTR(Inh)-172 significantly reduced wound currents (0.17 µA/cm(2)), implicating an important role of ion transporters in wound induced electric potentials. Time-lapse video microscopy showed that applied electric fields (EFs) induced robust directional migration of primary tracheobronchial epithelial cells from rhesus monkeys, towards the cathode, with a threshold of <23 mV/mm. Reversal of the field polarity induced cell migration towards the new cathode. We further demonstrate that application of an EF promoted wound healing in a monolayer wound healing assay. Our results suggest that endogenous electric currents at sites of tracheal epithelial injury may direct cell migration, which could benefit restitution of damaged airway mucosa. Manipulation of ion transport may lead to novel therapeutic approaches to repair damaged respiratory epithelium.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Mucosa Respiratória/fisiologia , Cicatrização/fisiologia , Animais , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Eletrodos , Células Epiteliais/metabolismo , Transporte de Íons , Macaca mulatta , Potenciais da Membrana/fisiologia , Mucosa Respiratória/metabolismo , Traqueia/metabolismo , Traqueia/fisiologia
17.
Mol Microbiol ; 70(6): 1378-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19019140

RESUMO

Survival and replication inside host cells by Brucella spp. requires a type IV secretion system (T4SS), encoded by the virB locus. However, the identity of the molecules secreted by the T4SS has remained elusive. We hypothesized that proteins translocated by the T4SS would be co-regulated with the virB operon. The LuxR family regulator VjbR, known to regulate virB, bound a fragment of the virB promoter containing an 18 bp palindromic motif (virB promoter box), showing that VjbR regulated the virB operon directly. To identify virB co-regulated genes, we searched the Brucella suis 1330 and B. abortus 2308 genomes for genes with an upstream virB promoter box. One hundred and forty-four promoters in the two genomes contained the virB promoter box, including those of fliC encoding flagellin and cgs encoding cyclic beta-glucan synthetase. Thirteen of these proteins were tested for VirB-dependent translocation into macrophages using a beta-lactamase reporter assay. This analysis resulted in the identification of the proteins encoded by BAB1_1652 (VceA) and BR1038/BAB1_1058 (VceC) as novel protein substrates of the Brucella T4SS. VceC could also be translocated by the Legionella pneumophila Dot/Icm T4SS into host cells. Our results suggest that VjbR co-ordinates expression of the T4SS and at least two of its secreted substrates.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Brucella suis/metabolismo , Macrófagos/metabolismo , Regulon , Via Secretória , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Brucella abortus/genética , Brucella suis/genética , Linhagem Celular , Sequência Consenso , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transporte Proteico , Via Secretória/genética
18.
Nat Immunol ; 9(10): 1171-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18724372

RESUMO

Inflammasomes are cytosolic multiprotein complexes that sense microbial infection and trigger cytokine production and cell death. However, the molecular components of inflammasomes and what they sense remain poorly defined. Here we demonstrate that 35 amino acids of the carboxyl terminus of flagellin triggered inflammasome activation in the absence of bacterial contaminants or secretion systems. To further elucidate the host flagellin-sensing pathway, we generated mice deficient in the intracellular sensor Naip5. These mice failed to activate the inflammasome in response to the 35 amino acids of flagellin or in response to Legionella pneumophila infection. Our data clarify the molecular basis for the cytosolic response to flagellin.


Assuntos
Flagelina/imunologia , Macrófagos/imunologia , Complexos Multiproteicos/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Motivos de Aminoácidos/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Citosol , Ensaio de Imunoadsorção Enzimática , Flagelina/química , Immunoblotting , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Macrófagos/microbiologia , Camundongos , Proteína Inibidora de Apoptose Neuronal/genética , Receptor 5 Toll-Like/imunologia , Receptor 5 Toll-Like/metabolismo , Transdução Genética
19.
Infect Immun ; 73(12): 7817-26, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299271

RESUMO

Salmonella enterica serotype Typhi is a strictly human adapted pathogen that does not cause disease in nonprimate vertebrate hosts, while Salmonella enterica serotype Typhimurium is a broad-host-range pathogen. Serotype Typhi lacks some of the proteins (effectors) exported by the invasion-associated type III secretion system that are required by serotype Typhimurium for eliciting fluid secretion and inflammation in bovine ligated ileal loops. We investigated whether the remaining serotype Typhi effectors implicated in enteropathogenicity (SipA, SopB, and SopD) are functionally exchangeable with their serotype Typhimurium homologues. Serotype Typhi elicited fluid accumulation in bovine ligated ileal loops at levels similar to those elicited by a noninvasive serotype Typhimurium strain (the sipA sopABDE2 mutant) or by sterile culture medium. However, introduction of the cloned serotype Typhi sipA, sopB, and sopD genes complemented the ability of a serotype Typhimurium sipA sopABDE2 mutant to elicit fluid secretion in bovine ligated ileal loops. Introduction of the cloned serotype Typhi sipA, sopB, and sopD genes increased the invasiveness of a serotype Typhimurium sipA sopABDE2 mutant for human colon carcinoma epithelial (HT-29 and T84) cells and bovine kidney (MDBK) cells. Translational fusions between the mature TEM-1 beta-lactamase reporter and SipA or SopD demonstrated that serotype Typhi translocates these effectors into host cells. We conclude that the inability of serotype Typhi to cause fluid accumulation in bovine ligated ileal loops is not caused by a functional alteration of its SipA, SopB, and SopD effector proteins with respect to their serotype Typhimurium homologues.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/fisiologia , Proteínas dos Microfilamentos/genética , Salmonella typhi/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Bovinos , Células Cultivadas , Clonagem Molecular , Teste de Complementação Genética , Humanos , Mucosa Intestinal/microbiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Mutação , Transporte Proteico , Salmonella typhi/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Especificidade da Espécie
20.
Infect Immun ; 73(9): 6048-54, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113325

RESUMO

The Brucella abortus virB operon, consisting of 11 genes, virB1 to virB11, and two putative genes, orf12 (virB12) and orf13, encodes a type IV secretion system (T4SS) that is required for intracellular replication and persistent infection in the mouse model. This study was undertaken to determine whether orf12 (virB12) encodes an essential part of the T4SS apparatus. The virB12 gene was found to encode a 17-kDa protein, which was detected in vitro in B. abortus grown to stationary phase. Mice infected with B. abortus 2308 produced an antibody response to the protein encoded by virB12, showing that this gene is expressed during infection. Expression of virB12 was not required for survival in J774 macrophages. VirB12 was also dispensable for the persistence of B. abortus, B. melitensis, and B. suis in mice up to 4 weeks after infection, since deletion mutants lacking virB12 were recovered from splenic tissue at wild-type levels. These results show that VirB12 is not essential for the persistence of the human-pathogenic Brucella spp. in the mouse and macrophage models of infection.


Assuntos
Proteínas de Bactérias/biossíntese , Brucella abortus/genética , Brucelose/microbiologia , Regulação da Expressão Gênica/imunologia , Óperon , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Brucella abortus/imunologia , Brucella abortus/metabolismo , Brucella melitensis/genética , Brucella suis/genética , Brucelose/metabolismo , Linhagem Celular , Feminino , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Deleção de Sequência , Baço/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA