Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273990

RESUMO

This study investigates the composition characteristics and anti-inflammatory activity mechanisms of the essential oil from the leaves of Crossostephium chinense. C. chinense is a perennial herb commonly found in East Asia, traditionally used to treat various ailments. The essential oil extracted through water distillation, primarily contains 1,8-cineole (13.73%), santolina triene (13.53%), and germacrene D (10.67%). Three compounds were identified from the essential oil, namely 1-acetoxy-2-(2-hydroxypropyl)-5-methylhex-3,5-diene, 1-acetoxy-isopyliden-hex-5-en-4-one, and chrysanthemyl acetate, with the first two being newly discovered compounds. Then, the essential oil of C. chinense exhibits significant anti-inflammatory effects on RAW264.7 macrophages, effectively inhibiting the production of NO and ROS, with the IC50 value of 10.3 µg/mL. Furthermore, the essential oil reduces the expression of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1ß. Mechanistic studies indicate that the essential oil affects the inflammatory response by inhibiting the expression of iNOS but has no significant impact on COX-2. Further analysis suggests that the essential oil may regulate the inflammatory response through the ERK protein in the MAPK pathway and IκBα in the NF-κB pathway, while also promoting the activity of the NRF2/HO-1 antioxidant pathway, enhancing the cell's antioxidant capacity, thereby achieving an effect of inhibiting the inflammatory response. These results highlight the potential application value of C. chinense leaf essential oil in the medical and healthcare fields.

2.
BMC Plant Biol ; 24(1): 307, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644483

RESUMO

BACKGROUND: Luffa (Luffa spp.) is an economically important crop of the Cucurbitaceae family, commonly known as sponge gourd or vegetable gourd. It is an annual cross-pollinated crop primarily found in the subtropical and tropical regions of Asia, Australia, Africa, and the Americas. Luffa serves not only as a vegetable but also exhibits medicinal properties, including anti-inflammatory, antidiabetic, and anticancer effects. Moreover, the fiber derived from luffa finds extensive applications in various fields such as biotechnology and construction. However, luffa Fusarium wilt poses a severe threat to its production, and existing control methods have proven ineffective in terms of cost-effectiveness and environmental considerations. Therefore, there is an urgent need to develop luffa varieties resistant to Fusarium wilt. Single-plant GWAS (sp-GWAS) has been demonstrated as a promising tool for the rapid and efficient identification of quantitative trait loci (QTLs) associated with target traits, as well as closely linked molecular markers. RESULTS: In this study, a collection of 97 individuals from 73 luffa accessions including two major luffa species underwent single-plant GWAS to investigate luffa Fusarium wilt resistance. Utilizing the double digest restriction site associated DNA (ddRAD) method, a total of 8,919 high-quality single nucleotide polymorphisms (SNPs) were identified. The analysis revealed the potential for Fusarium wilt resistance in accessions from both luffa species. There are 6 QTLs identified from 3 traits, including the area under the disease progress curve (AUDPC), a putative disease-resistant QTL, was identified on the second chromosome of luffa. Within the region of linkage disequilibrium, a candidate gene homologous to LOC111009722, which encodes peroxidase 40 and is associated with disease resistance in Cucumis melo, was identified. Furthermore, to validate the applicability of the marker associated with resistance from sp-GWAS, an additional set of 21 individual luffa plants were tested, exhibiting 93.75% accuracy in detecting susceptible of luffa species L. aegyptiaca Mill. CONCLUSION: In summary, these findings give a hint of genome position that may contribute to luffa wild resistance to Fusarium and can be utilized in the future luffa wilt resistant breeding programs aimed at developing wilt-resistant varieties by using the susceptible-linked SNP marker.


Assuntos
Resistência à Doença , Fusarium , Estudo de Associação Genômica Ampla , Luffa , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fusarium/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Luffa/genética , Luffa/microbiologia , Genoma de Planta , Marcadores Genéticos , Variação Genética
3.
J Exp Bot ; 61(5): 1483-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20167611

RESUMO

Variegated plants provide a valuable tool for studying chloroplast biogenesis by allowing direct comparison between green and white/yellow sectors within the same leaf. While variegated plants are abundant in nature, the mechanism of leaf variegation remains largely unknown. Current studies are limited to a few mutants in model plant species, and are complicated by the potential for cross-contamination during dissection of leaf tissue into contrasting sectors. To overcome these obstacles, an alternative approach was explored using tissue-culture techniques to regenerate plantlets from unique sectors. Stable green and pale yellow plants were developed from a naturally variegated Epipremnum aureum 'Golden Pothos'. By comparing the gene expression between green and pale yellow plants using suppression subtractive hybridization in conjunction with homologous sequence search, nine down-regulated and 18 up-regulated genes were identified in pale yellow plants. Transcript abundance for EaZIP (Epipremnum aureum leucine zipper), a nuclear gene homologue of tobacco NTZIP and Arabidopsis CHL27, was reduced more than 4000-fold in qRT-PCR analysis. EaZIP encodes the Mg-protoporphyrin IX monomethyl ester cyclase, one of the key enzymes in the chlorophyll biosynthesis pathway. Examination of EaZIP expression in naturally variegated 'Golden Pothos' confirmed that EaZIP transcript levels were correlated with leaf chlorophyll contents, suggesting that this gene plays a major role in the loss of chlorophyll in the pale yellow sectors of E. aureum 'Golden Pothos'. This study further suggests that tissue-culture regeneration of plantlets from different coloured sectors of variegated leaves can be used to investigate the underlying mechanisms of variegation.


Assuntos
Araceae/embriologia , Araceae/metabolismo , Proteínas de Plantas/metabolismo , Regeneração/fisiologia , Sequência de Aminoácidos , Araceae/ultraestrutura , Western Blotting , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
4.
Nucleic Acids Res ; 37(6): 1878-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19188256

RESUMO

The modification or degradation of RNAs including miRNAs may play vital roles in regulating RNA functions. The polyadenylation- and exosome-mediated RNA decay is involved in the degradation of plant RNAs including the primary miRNA processing intermediates. However, plant miRNA levels are not affected by exosome depletion. Here, we report the cloning of a large number of 5' and/or 3' truncated versions of the known miRNAs from various tissues of Populus trichocarpa (black cottonwood). It suggests that plant miRNAs may be degraded through either 5' to 3' or 3' to 5' exonucleolytic digestion. We also show that a significant portion of the isolated miRNAs contains, at the 3'-end, one or a few post-transcriptionally added adenylic acid residues, which are distinct in length from the polyadenylate tail added to other plant RNAs for exosome-mediated degradation. Using an in vitro miRNA degradation system, where synthesized miRNA oligos were degraded in extracts of P. trichocarpa cells, we revealed that the adenylated miRNAs were degraded slower than others without adenylation. It indicates that addition of adenylic acid residues on the 3'-end plays a negative role in miRNA degradation. Our results provide new information for understanding the mechanism of miRNA degradation.


Assuntos
MicroRNAs/metabolismo , Processamento de Terminações 3' de RNA , Estabilidade de RNA , RNA de Plantas/metabolismo , Monofosfato de Adenosina/análise , Variação Genética , MicroRNAs/química , Populus/genética , RNA de Plantas/química , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA