Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Thorac Imaging ; 39(3): 146-156, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744945

RESUMO

PURPOSE: Shortened injection durations are not recommended in step-and-shoot coronary computed tomography angiography (CCTA). We aimed to evaluate the image quality of CCTA performed using bodyweight-adjusted iodinated contrast media (ICM) with different injection durations to generate an optimized ICM administration protocol to acquire convincible image quality in step-and-shoot CCTA. MATERIALS AND METHODS: A total of 200 consecutive patients with suspected coronary artery disease (CAD) were enrolled in group A (N=50, 350 mgI/mL, bodyweight×0.8 mL/kg with a 13-s injection duration), group B (N=50, 350 mgI/mL, bodyweight×0.9 mL/kg with a 13-s injection duration), group C (N=50, 350 mgI/mL, bodyweight×0.8 mL/kg with a 12-s injection duration), and group D (N=50, 320 mgI/mL, bodyweight×0.8 mL/kg with a 13-s injection duration). Patient characteristics, ICM administration protocols, quantitative computed tomography (CT) value measurements, and qualitative image scores were analyzed and compared among the groups. RESULTS: Groups A and D achieved the lowest ICM volume, saline volume, injection flow rate, and total iodine and iodine injection rates among the groups. All the CT values of the coronary arteries in all groups were >300 HU. All the observers' average scores exceeded three points. In group A, the CT values showed significant positive correlation with the iodine injection rate ( r =0.226, P <0.001), whereas the signal-to-noise ratio ( r =-0.004, P =0.927) and contrast-to-noise ratio ( r =-0.006, P =0.893) values were not. CONCLUSIONS: Bodyweight×0.8 mL/kg with a 13-second injection duration is a comprehensive option for step-and-shoot CCTA with improved image quality, and a 350 mgI/mL iodine concentration is preferred.

2.
Respir Res ; 24(1): 299, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017476

RESUMO

OBJECTIVES: Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans can effectively evaluate SAD in individuals with normal spirometry. METHODS: We included 537 participants with normal spirometry, a history of smoking or secondhand smoke exposure, and divided them into training, tuning, and test sets. A cascaded generative adversarial network generated expiratory CT from inspiratory CT, followed by a UNet-like network predicting PRM using real inspiratory CT and generated expiratory CT. The performance of the prediction is evaluated using SSIM, RMSE and dice coefficients. Pearson correlation evaluated the correlation between predicted and ground truth PRM. ROC curves evaluated predicted PRMfSAD (the volume percentage of functional small airway disease, fSAD) performance in stratifying SAD. RESULTS: Our method can generate expiratory CT of good quality (SSIM 0.86, RMSE 80.13 HU). The predicted PRM dice coefficients for normal lung, emphysema, and fSAD regions are 0.85, 0.63, and 0.51, respectively. The volume percentages of emphysema and fSAD showed good correlation between predicted and ground truth PRM (|r| were 0.97 and 0.64, respectively, p < 0.05). Predicted PRMfSAD showed good SAD stratification performance with ground truth PRMfSAD at thresholds of 15%, 20% and 25% (AUCs were 0.84, 0.78, and 0.84, respectively, p < 0.001). CONCLUSION: Our deep learning method generates high-quality PRM using inspiratory chest CT and effectively stratifies SAD in individuals with normal spirometry.


Assuntos
Asma , Aprendizado Profundo , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem
3.
Mol Cancer ; 22(1): 84, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37189103

RESUMO

BACKGROUND: Checkpoint blockade immunotherapy, represented by PD-1 or PD-L1 antibody treatment, has been of tremendous success in clinical practice. However, the low clinical response rate and lack of biomarkers for prediction of the immune response limit the clinical application of anti-PD-1 immunotherapy. Our recent work showed that a combination of low-dose decitabine and PD-1-ab significantly improved the complete response (CR) rate of cHL patients from 32 to 71%, which indicates that there is a significant correlation between epigenetic regulation and the clinical response to immunotherapy. METHODS: We recruited two groups of Hodgkin lymphoma patients who were treated with anti-PD-1 and DAC+anti-PD-1. CD8+ T cells were isolated from the patients' peripheral blood, DNA methylation was analyzed by EPIC, the expression profile was analyzed by RNA-seq, and multigroup analysis was performed with IPA and GSEA functional annotations. We explored the effect of DAC on the function of CD8+ T cells in the blood, spleen, tumor and lymph nodes using a mouse model. Furthermore, we explored the function of Tils in the tumor microenvironment. Then, we constructed Runx3-knockout mice to confirm the T-cell-specific function of Runx3 in CD8+ T cells and analyzed various subtypes of T cells and cytokines using mass cytometry (CyTOF). RESULTS: Multiomics analysis identified that DNA methylation reprogramming of Runx3 was a crucial mediator of CD8+ T-cell function. Multiomics data showed that reversal of methylation of the Runx3 promoter promoted the infiltration of CD8+ TILs and mitigated the exhaustion of CD8+ T cells. Furthermore, experiments on tissue-specific Runx3-knockout mice showed that Runx3 deficiency reduced CD8+ T infiltration and the differentiation of effector T and memory T cells. Furthermore, Runx3 deficiency significantly decreased CCR3 and CCR5 levels. Immunotherapy experiments in Runx3 conditional knockout mice showed that DAC could not reverse the resistance of anti-PD-1 in the absence of Runx3. Moreover, both our clinical data and data from TISIDB showed that Runx3 could be a potential biomarker for immunotherapy to predict the clinical response rate. CONCLUSION: We demonstrate that the DNA methylation of Runx3 plays a critical role in CD8+ T-cell infiltration and differentiation during decitabine-primed PD-1-ab immunotherapy, which provides a supporting mechanism for the essential role of epiregulation in immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Epigênese Genética , Animais , Camundongos , Decitabina/farmacologia , Imunoterapia , Biomarcadores/metabolismo , Metilação de DNA , Camundongos Knockout , Microambiente Tumoral
4.
Acta Pharm Sin B ; 13(3): 903-915, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970213

RESUMO

We summarize the most important advances in RNA delivery and nanomedicine. We describe lipid nanoparticle-based RNA therapeutics and the impacts on the development of novel drugs. The fundamental properties of the key RNA members are described. We introduced recent advances in the nanoparticles to deliver RNA to defined targets, with a focus on lipid nanoparticles (LNPs). We review recent advances in biomedical therapy based on RNA drug delivery and state-of-the-art RNA application platforms, including the treatment of different types of cancer. This review presents an overview of current LNPs based RNA therapies in cancer treatment and provides deep insight into the development of future nanomedicines sophisticatedly combining the unparalleled functions of RNA therapeutics and nanotechnology.

5.
Eur J Radiol ; 159: 110684, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621209

RESUMO

PURPOSE: Individualized follow-up of pulmonary ground-glass nodules (GGNs) remains challenging in clinical practice. Accurate prediction of the growth or long-term stability of persistent GGNs is essential to optimize the follow-up intervals. METHODS: In this retrospective study, 253 patients with 1115 computed tomography (CT) images were recruited. In total, 1115 CT images were randomized into training (70%) and validation sets (30%). We developed models for the growth or long-term stable prediction of GGNs using radiomics and clinical features. We evaluated the prediction accuracy of the models using receiver operating characteristic (ROC) curve analysis, and the areas under the curve (AUCs) were established. The ROC curves of the models were compared using the DeLong method. RESULTS: The growth and stable groups contained 535 and 580 GGNs, respectively. Traditional radiographic features have limited value in the prediction of growth or long-term stability of GGNs. The prediction nomogram model combining radiomics and clinical features (size, location, and age) yielded the best AUC in both the training and validation sets (AUC = 0.843 and 0.824, respectively). The radiomics model outperformed the clinical model in both sets (AUC: 0.836 vs 0.772 and 0.818 vs 0.735, respectively). The radiomics signature and nomogram model achieved similar AUCs (Delong test, training set: P = 0.09; validation set: P = 0.37). CONCLUSIONS: We developed and validated a nomogram model combining radiomics signature, size, age, and location to predict the growth or long-term stability of GGNs. The model achieved good performance and may provide a basis for the improvement of follow-up management of GGNs.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nomogramas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
6.
Front Med (Lausanne) ; 9: 939434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405608

RESUMO

Objective: This study aimed to assess the value of radiomics based on non-contrast computed tomography (NCCT) and contrast-enhanced computed tomography (CECT) images in the preoperative discrimination between lung invasive adenocarcinomas (IAC) and non-invasive adenocarcinomas (non-IAC). Methods: We enrolled 1,185 pulmonary nodules (478 non-IACs and 707 IACs) to build and validate radiomics models. An external testing set comprising 63 pulmonary nodules was collected to verify the generalization of the models. Radiomic features were extracted from both NCCT and CECT images. The predictive performance of radiomics models in the validation and external testing sets were evaluated and compared with radiologists' evaluations. The predictive performances of the radiomics models were also compared between three subgroups in the validation set (Group 1: solid nodules, Group 2: part-solid nodules, and Group 3: pure ground-glass nodules). Results: The NCCT, CECT, and combined models showed good ability to discriminate between IAC and non-IAC [respective areas under the curve (AUCs): validation set = 0.91, 0.90, and 0.91; Group 1 = 0.82, 0.79, and 0.81; Group 2 = 0.93, 0.92, and 0.93; and Group 3 = 0.90, 0.90, and 0.89]. In the external testing set, the AUC of the three models were 0.89, 0.91, and 0.89, respectively. The accuracies of these three models were comparable to those of the senior radiologist and better those that of the junior radiologist. Conclusion: Radiomic models based on CT images showed good predictive performance in discriminating between lung IAC and non-IAC, especially in part solid nodule group. However, radiomics based on CECT images provided no additional value compared to NCCT images.

7.
Signal Transduct Target Ther ; 7(1): 331, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123348

RESUMO

Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Antígeno CTLA-4/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1
8.
Front Oncol ; 12: 900049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033463

RESUMO

Objective: To investigate whether radiomics can help radiologists and thoracic surgeons accurately predict invasive adenocarcinoma (IAC) manifesting as part-solid nodules (PSNs) with solid components <6 mm and provide a basis for rational clinical decision-making. Materials and Methods: In total, 1,210 patients (mean age ± standard deviation: 54.28 ± 11.38 years, 374 men and 836 women) from our hospital and another hospital with 1,248 PSNs pathologically diagnosed with adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or IAC were enrolled in this study. Among them, 1,050 cases from our hospital were randomly divided into a derivation set (n = 735) and an internal validation set (n = 315), 198 cases from another hospital were used for external validation. Each labeled nodule was segmented, and 105 radiomics features were extracted. Least absolute shrinkage and selection operator (LASSO) was used to calculate Rad-score and build the radiomics model. Multivariable logistic regression was conducted to identify the clinicoradiological predictors and establish the clinical-radiographic model. The combined model and predictive nomogram were developed based on identified clinicoradiological independent predictors and Rad-score using multivariable logistic regression analysis. The predictive performances of the three models were compared via receiver operating characteristic (ROC) curve analysis. Decision curve analysis (DCA) was performed on both the internal and external validation sets to evaluate the clinical utility of the nomogram. Results: The radiomics model showed superior predictive performance than the clinical-radiographic model in both internal and external validation sets (Az values, 0.884 vs. 0.810, p = 0.001; 0.924 vs. 0.855, p < 0.001, respectively). The combined model showed comparable predictive performance to the radiomics model (Az values, 0.887 vs. 0.884, p = 0.398; 0.917 vs. 0.924, p = 0.271, respectively). The clinical application value of the nomogram developed based on the Rad-score, maximum diameter, and lesion shape was confirmed, and DCA demonstrated that application of the Rad-score would be beneficial for radiologists predicting invasive lesions. Conclusions: Radiomics has the potential as an independent diagnostic tool to predict the invasiveness of PSNs with solid components <6 mm.

9.
Clin Transl Med ; 12(8): e1014, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998020

RESUMO

BACKGROUND: Cancer cell-specific variation and circulating tumour DNA (ctDNA) methylation are promising biomarkers for non-invasive cancer detection and molecular classification. Nevertheless, the applications of ctDNA to the early detection and screening of cancer remain highly challenging due to the scarcity of cancer cell-specific ctDNA, the low signal-to-noise ratio of DNA variation, and the lack of non-locus-specific DNA methylation technologies. METHODS: We enrolled three cohorts of breast cancer (BC) patients from two hospitals in China (BC: n = 123; healthy controls: n = 40). We developed a ctDNA whole-genome bisulfite sequencing technology employing robust trace ctDNA capture from up to 200 µL plasma, mini-input (1 ng) library preparation, unbiased genome-wide coverage and comprehensive computational methods. RESULTS: A diagnostic signature comprising 15 ctDNA methylation markers exhibited high accuracy in the early (area under the curve [AUC] of 0.967) and advanced (AUC of 0.971) BC stages in multicentre patient cohorts. Furthermore, we revealed a ctDNA methylation signature that discriminates estrogen receptor status (Training set: AUC of 0.984 and Test set: AUC of 0.780). Different cancer types, including hepatocellular carcinoma and lung cancer, could also be well distinguished. CONCLUSIONS: Our study provides a toolset to generate unbiased whole-genome ctDNA methylomes with a minimal amount of plasma to develop highly specific and sensitive biomarkers for the early diagnosis and molecular subtyping of cancer.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Feminino , Humanos , Sulfitos
10.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954342

RESUMO

To investigate the value of the deep learning method in predicting the invasiveness of early lung adenocarcinoma based on irregularly sampled follow-up computed tomography (CT) scans. In total, 351 nodules were enrolled in the study. A new deep learning network based on temporal attention, named Visual Simple Temporal Attention (ViSTA), was proposed to process irregularly sampled follow-up CT scans. We conducted substantial experiments to investigate the supplemental value in predicting the invasiveness using serial CTs. A test set composed of 69 lung nodules was reviewed by three radiologists. The performance of the model and radiologists were compared and analyzed. We also performed a visual investigation to explore the inherent growth pattern of the early adenocarcinomas. Among counterpart models, ViSTA showed the best performance (AUC: 86.4% vs. 60.6%, 75.9%, 66.9%, 73.9%, 76.5%, 78.3%). ViSTA also outperformed the model based on Volume Doubling Time (AUC: 60.6%). ViSTA scored higher than two junior radiologists (accuracy of 81.2% vs. 75.4% and 71.0%) and came close to the senior radiologist (85.5%). Our proposed model using irregularly sampled follow-up CT scans achieved promising accuracy in evaluating the invasiveness of the early stage lung adenocarcinoma. Its performance is comparable with senior experts and better than junior experts and traditional deep learning models. With further validation, it can potentially be applied in clinical practice.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35862326

RESUMO

Noninvasively and accurately predicting the epidermal growth factor receptor (EGFR) mutation status is a clinically vital problem. Moreover, further identifying the most suspicious area related to the EGFR mutation status can guide the biopsy to avoid false negatives. Deep learning methods based on computed tomography (CT) images may improve the noninvasive prediction of EGFR mutation status and potentially help clinicians guide biopsies by visual methods. Inspired by the potential inherent links between EGFR mutation status and invasiveness information, we hypothesized that the predictive performance of a deep learning network can be improved through extra utilization of the invasiveness information. Here, we created a novel explainable transformer network for EGFR classification named gated multiple instance learning transformer (GMILT) by integrating multi-instance learning and discriminative weakly supervised feature learning. Pathological invasiveness information was first introduced into the multitask model as embeddings. GMILT was trained and validated on a total of 512 patients with adenocarcinoma and tested on three datasets (the internal test dataset, the external test dataset, and The Cancer Imaging Archive (TCIA) public dataset). The performance (area under the curve (AUC) = 0.772 on the internal test dataset) of GMILT exceeded that of previously published methods and radiomics-based methods (i.e., random forest and support vector machine) and attained a preferable generalization ability (AUC = 0.856 in the TCIA test dataset and AUC = 0.756 in the external dataset). A diameter-based subgroup analysis further verified the efficiency of our model (most of the AUCs exceeded 0.772) to noninvasively predict EGFR mutation status from computed tomography (CT) images. In addition, because our method also identified the "core area" of the most suspicious area related to the EGFR mutation status, it has the potential ability to guide biopsies.

12.
MedComm (2020) ; 3(3): e134, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35756163

RESUMO

The changes in circulating tumor DNA (ctDNA) methylation are believed to be early events in breast cancer initiation, which makes them suitable as promising biomarkers for early diagnosis. However, applying ctDNA in breast cancer early diagnosis remains highly challenging due to the contamination of background DNA from blood and low DNA methylation signals. Here, we report an improved way to extract ctDNA, reduce background contamination, and build a whole-genome bisulfite sequencing (WGBS) library from different stages of breast cancer. We first compared the DNA methylation data of 74 breast cancer patients with those of seven normal controls to screen candidate methylation CpG site biomarkers for breast cancer diagnosis. The obtained 26 candidate ctDNA methylation biomarkers produced high accuracy in breast cancer patients (area under the curve [AUC] = 0.889; sensitivity: 100%; specificity: 75%). Furthermore, we revealed potential ctDNA methylated CpG sites for detecting early-stage breast cancer (AUC = 0.783; sensitivity: 93.44%; specificity: 50%). In addition, different subtypes of breast cancer could be well distinguished by the ctDNA methylome, which was obtained through our improved ctDNA-WGBS method. Overall, we identified high specificity and sensitivity breast cancer-specific methylation CpG site biomarkers, and they will be expected to have the potential to be translated to clinical practice.

13.
Cancer Chemother Pharmacol ; 89(6): 825-831, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322287

RESUMO

PURPOSE: Copanlisib, a pan-PI3K inhibitor, has previously shown clinical efficacy and a tolerable safety profile in patients with indolent non-Hodgkin lymphoma. However, the pharmacokinetics, safety, tolerability, and efficacy of copanlisib in Chinese patients have not been reported. METHODS: This was a single-arm, open-label, phase I study of copanlisib in Chinese patients with relapsed or refractory indolent non-Hodgkin lymphoma (iNHL). Patients received a single intravenous 60 mg infusion of copanlisib over 1 h on days 1, 8, and 15 of a 28-day cycle, with 1 week of rest. Safety was monitored throughout the study, and plasma copanlisib levels were measured for pharmacokinetic analysis. Tumor response was determined by independent central radiologic review. RESULTS: Sixteen patients were enrolled and 13 were treated with 60 mg of copanlisib for a median of 15.0 weeks. With a Cmax of 566 µg/L and a AUC (0-24) of 1880 µg·h/L following single intravenous infusion, the pharmacokinetic parameters of copanlisib were consistent with that in previous studies, and no accumulation in plasma was observed. Treatment-emergent adverse events were reported for all 13 patients, the most common of which were hyperglycemia (100.0%), hypertension (76.9%), decreased neutrophil count (76.9%), and decreased white blood cell count (69.2%). Seven out of 12 evaluated patients achieved partial response, resulting in an overall response rate of 58.3% CONCLUSIONS: Copanlisib was well tolerated in Chinese patients with relapsed or refractory iNHL at the dose of 60 mg and demonstrated encouraging disease control, thus warranting further clinical investigation. CLINICAL TRIAL REGISTRATION NUMBER: NCT03498430 (April 13, 2018).


Assuntos
Linfoma não Hodgkin , Fosfatidilinositol 3-Quinases , China , Humanos , Linfoma não Hodgkin/tratamento farmacológico , Pirimidinas , Quinazolinas
14.
Front Oncol ; 12: 772770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186727

RESUMO

OBJECTIVES: EGFR testing is a mandatory step before targeted therapy for non-small cell lung cancer patients. Combining some quantifiable features to establish a predictive model of EGFR expression status, break the limitations of tissue biopsy. MATERIALS AND METHODS: We retrospectively analyzed 1074 patients of non-small cell lung cancer with complete reports of EGFR gene testing. Then manually segmented VOI, captured the clinicopathological features, analyzed traditional radiology features, and extracted radiomic, and deep learning features. The cases were randomly divided into training and test set. We carried out feature screening; then applied the light GBM algorithm, Resnet-101 algorithm, logistic regression to develop sole models, and fused models to predict EGFR mutation conditions. The efficiency of models was evaluated by ROC and PRC curves. RESULTS: We successfully established Modelclinical, Modelradiomic, ModelCNN (based on clinical-radiology, radiomic and deep learning features respectively), Modelradiomic+clinical (combining clinical-radiology and radiomic features), and ModelCNN+radiomic+clinical (combining clinical-radiology, radiomic, and deep learning features). Among the prediction models, ModelCNN+radiomic+clinical showed the highest performance, followed by ModelCNN, and then Modelradiomic+clinical. All three models were able to accurately predict EGFR mutation with AUC values of 0.751, 0.738, and 0.684, respectively. There was no significant difference in the AUC values between ModelCNN+radiomic+clinical and ModelCNN. Further analysis showed that ModelCNN+radiomic+clinical effectively improved the efficacy of Modelradiomic+clinical and showed better efficacy than ModelCNN. The inclusion of clinical-radiology features did not effectively improve the efficacy of Modelradiomic. CONCLUSIONS: Either deep learning or radiomic signature-based models can provide a fairly accurate non-invasive prediction of EGFR expression status. The model combined both features effectively enhanced the performance of radiomic models and provided marginal enhancement to deep learning models. Collectively, fusion models offer a novel and more reliable way of providing the efficacy of currently developed prediction models, and have far-reaching potential for the optimization of noninvasive EGFR mutation status prediction methods.

16.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(6): 752-754, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34296700

RESUMO

OBJECTIVE: To observe the effect of two different screening scales used by 120 dispatchers to early identify stroke patients and give telephone guidance for treatment. METHODS: From October 2018 to August 2019, 2 027 stroke and suspect stroke patients who called the Kaifeng 120 Emergency Center were enrolled. The differences in the final positive rate of stroke diagnosis and the incidence of adverse events were compared and analyzed in 1 020 cases using recognition of stroke in the emergency room (ROSIER) and 1 007 cases using facial drooping, arm weakness, speech difficulties and time (FAST) scale scores for telephone guidance. RESULTS: The positive rate of stroke identification in ROSIER score group was higher than that in FAST score group [31.4% (320/1 020) vs. 29.3% (295/1 007)], the false report rate was significantly lower than that in FAST score group [14.9% (152/1 020) vs. 18.8% (189/1 007), P < 0.05], the incidence of adverse events caused by vomiting, falling from bed and convulsions in ROSIER score group were lower than those in FAST score group [0.5% (1/208) vs. 2.2% (4/185), 0% (0/26) vs. 20.0% (2/10), 2.1% (1/48) vs. 10.3% (3/29)], however, the incidence of adverse events caused by falling out of bed was significantly lower (P < 0.05). The incidence of total adverse events in ROSIER score group was significantly lower than that in FAST score group [0.7% (2/305) vs. 3.8% (9/235), P < 0.05]. The time of FAST score group was shorter than that of ROSIER score group (minutes: 1.2±0.2 vs. 2.5±0.3), but the difference was not statistically significant (P > 0.05). CONCLUSIONS: Two different scales can be used to early identify stroke patients and provide timely pre-hospital guidance, thus reduce the incidence of adverse events. Although the ROSIER score takes longer time, the dispatchers guide the patients by phone which does not affect the dispatch time.


Assuntos
Serviços Médicos de Emergência , Acidente Vascular Cerebral , Serviço Hospitalar de Emergência , Hospitais , Humanos , Programas de Rastreamento , Acidente Vascular Cerebral/diagnóstico , Telefone
17.
Nat Commun ; 12(1): 3803, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155197

RESUMO

The adenomatous polyposis coli (APC) is a frequently mutated tumour suppressor gene in cancers. However, whether APC is regulated at the epitranscriptomic level remains elusive. In this study, we analysed TCGA data and separated 200 paired oesophageal squamous cell carcinoma (ESCC) specimens and their adjacent normal tissues and demonstrated that methyltransferase-like 3 (METTL3) is highly expressed in tumour tissues. m6A-RNA immunoprecipitation sequencing revealed that METTL3 upregulates the m6A modification of APC, which recruits YTHDF for APC mRNA degradation. Reduced APC expression increases the expression of ß-catenin and ß-catenin-mediated cyclin D1, c-Myc, and PKM2 expression, thereby leading to enhanced aerobic glycolysis, ESCC cell proliferation, and tumour formation in mice. In addition, downregulated APC expression correlates with upregulated METTL3 expression in human ESCC specimens and poor prognosis in ESCC patients. Our findings reveal a mechanism by which the Wnt/ß-catenin pathway is upregulated in ESCC via METTL3/YTHDF-coupled epitranscriptomal downregulation of APC.


Assuntos
Adenosina/análogos & derivados , Proteínas do Citoesqueleto/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Animais , Carcinogênese , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Metiltransferases/genética , Camundongos , Prognóstico , RNA Mensageiro/metabolismo , Efeito Warburg em Oncologia , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
18.
Nat Commun ; 12(1): 3785, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145257

RESUMO

Primary small cell carcinoma of the esophagus (PSCCE) is a lethal neuroendocrine carcinoma. Previous studies proposed a genetic similarity between PSCCE and esophageal squamous cell carcinoma (ESCC) but provided little evidence for differences in clinical course and neuroendocrine differentiation. We perform whole-exome sequencing, RNA sequencing and immunohistochemistry profiling on 46 PSCCE cases. Integrated analyses enable the discovery of multiple mechanisms of RB1 disruption in 98% (45/46) of cases. The transcriptomic landscape of PSCCE closely resembles small cell lung cancer (SCLC) but differs from ESCC or esophageal adenocarcinoma (EAC). Distinct gene expression patterns regulated by ASCL1 and NEUROD1 define two molecular subtypes, PSCCE-A and PSCCE-N, which are highly similar to SCLC subtypes. A T cell excluded phenotype is widely observed in PSCCE. In conclusion, PSCCE has genomic alterations, transcriptome features and molecular subtyping highly similar to SCLC but distinct from ESCC or EAC. These observations are relevant to oncogenesis mechanisms and therapeutic vulnerability.


Assuntos
Adenocarcinoma/genética , Carcinoma de Células Pequenas/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Pulmonares/genética , Proteínas de Ligação a Retinoblastoma/genética , Carcinoma de Pequenas Células do Pulmão/genética , Ubiquitina-Proteína Ligases/genética , Adenocarcinoma/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Pequenas/patologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Esôfago/patologia , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Análise de Sequência de RNA , Carcinoma de Pequenas Células do Pulmão/patologia
19.
Eur J Radiol ; 141: 109810, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34102564

RESUMO

OBJECTIVE: To investigate whether 3D convolutional neural network (CNN) is able to enhance the classification performance of radiologists in classifying pulmonary non-solid nodules (NSNs). MATERIALS AND METHODS: Data of patients with solitary NSNs and diagnosed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC) in pathological after surgical resection were analyzed retrospectively. Ultimately, 532 patients in our institution were included in the study: 427 cases (144 AIS, 167 MIA, 116 IAC) were assigned to training dataset and 105 cases (36 AIS, 41 MIA and 28 IAC) were assigned to validation dataset. For external validation, 177 patients (60 AIS, 69 MIA and 48 IAC) from another hospital were assigned to testing dataset. The clinical and morphological characteristics of NSNs were established as radiologists' model. The trained classification model based on 3D CNN was used to identify NSNs types automatically. The evaluation and comparison on classification performance of the two models and CNN + radiologists' model were performed via receiver operating curve (ROC) analysis and integrated discrimination improvement (IDI) index. The Akaike information criterion (AIC) was calculated to find the best-fit model. RESULTS: In external testing dataset, radiologists' model showed inferior classification performance than CNN model both in discriminating AIS from MIA-IAC and AIS-MIA from IAC (the area under the ROC curve (Az value), 0.693 vs 0.820, P = 0.011; 0.746 vs 0.833, P = 0.026, respectively). However, combining CNN significantly enhanced the classification performance of radiologists and exhibited higher Az values than CNN model alone (Az values, 0.893 vs 0.820, P < 0.001; 0.906 vs 0.833, P < 0.001, respectively). The IDI index further confirmed CNN's contribution to radiologists in classifying NSNs (IDI = 25.8 % (18.3-46.1 %), P < 0.001; IDI = 30.1 % (26.1-45.2 %), P < 0.001, respectively). The CNN + radiologists' model also provided the best fit over radiologists' model and CNN model alone (AIC value 63.3 % vs. 29.5 %, 49.5 %, P < 0.001; 69.2 % vs. 34.9 %, 53.6 %, P < 0.001, respectively). CONCLUSION: CNN successfully classified NSNs based on CT images and its classification performance were superior to radiologists' model. But the classification performance of radiologists can be significantly enhanced when combined with CNN in classifying NSNs.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Invasividade Neoplásica , Redes Neurais de Computação , Radiologistas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
20.
Front Oncol ; 11: 658138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937070

RESUMO

OBJECTIVES: To investigate the value of imaging in predicting the growth rate of early lung adenocarcinoma. METHODS: From January 2012 to June 2018, 402 patients with pathology-confirmed lung adenocarcinoma who had two or more thin-layer CT follow-up images were retrospectively analyzed, involving 407 nodules. Two complete preoperative CT images and complete clinical data were evaluated. Training and validation sets were randomly assigned according to an 8:2 ratio. All cases were divided into fast-growing and slow-growing groups. Researchers extracted 1218 radiomics features from each volumetric region of interest (VOI). Then, radiomics features were selected by repeatability analysis and Analysis of Variance (ANOVA); Based on the Univariate and multivariate analyses, the significant radiographic features is selected in training set. A decision tree algorithm was conducted to establish the radiographic model, radiomics model and the combined radiographic-radiomics model. Model performance was assessed by the area under the curve (AUC) obtained by receiver operating characteristic (ROC) analysis. RESULTS: Sixty-two radiomics features and one radiographic features were selected for predicting the growth rate of pulmonary nodules. The combined radiographic-radiomics model (AUC 0.78) performed better than the radiographic model (0.727) and the radiomics model (0.710) in the validation set. CONCLUSIONS: The model has good clinical application value and development prospects to predict the growth rate of early lung adenocarcinoma through the combined radiographic-radiomics model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA