Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3760, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434885

RESUMO

Adeno-associated virus (AAV) receptor (AAVR) is an essential receptor for the entry of multiple AAV serotypes with divergent rules; however, the mechanism remains unclear. Here, we determine the structures of the AAV1-AAVR and AAV5-AAVR complexes, revealing the molecular details by which PKD1 recognizes AAV5 and PKD2 is solely engaged with AAV1. PKD2 lies on the plateau region of the AAV1 capsid. However, the AAV5-AAVR interface is strikingly different, in which PKD1 is bound at the opposite side of the spike of the AAV5 capsid than the PKD2-interacting region of AAV1. Residues in strands F/G and the CD loop of PKD1 interact directly with AAV5, whereas residues in strands B/C/E and the BC loop of PKD2 make contact with AAV1. These findings further the understanding of the distinct mechanisms by which AAVR recognizes various AAV serotypes and provide an example of a single receptor engaging multiple viral serotypes with divergent rules.


Assuntos
Capsídeo/metabolismo , Dependovirus/fisiologia , Receptores de Superfície Celular/metabolismo , Internalização do Vírus , Capsídeo/ultraestrutura , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/classificação , Dependovirus/genética , Glicosilação , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/ultraestrutura , Sorogrupo , Canais de Cátion TRPP , Transdução Genética
2.
Nat Microbiol ; 4(4): 675-682, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742069

RESUMO

Adeno-associated virus (AAV) is a leading vector for virus-based gene therapy. The receptor for AAV (AAVR; also named KIAA0319L) was recently identified, and the precise characterization of AAV-AAVR recognition is in immediate demand. Taking advantage of a particle-filtering algorithm, we report here the cryo-electron microscopy structure of the AAV2-AAVR complex at 2.8 Å resolution. This structure reveals that of the five Ig-like polycystic kidney disease (PKD) domains in AAVR, PKD2 binds directly to the spike region of the AAV2 capsid adjacent to the icosahedral three-fold axis. Residues in strands B and E, and the BC loop of AAVR PKD2 interact directly with the AAV2 capsid. The interacting residues in the AAV2 capsid are mainly in AAV-featured variable regions. Mutagenesis of the amino acids at the AAV2-AAVR interface reduces binding activity and viral infectivity. Our findings provide insights into the biology of AAV entry with high-resolution details, providing opportunities for the development of new AAV vectors for gene therapy.


Assuntos
Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Parvovirinae/metabolismo , Receptores de Superfície Celular/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Dependovirus , Interações Hospedeiro-Parasita , Humanos , Parvovirinae/genética , Parvovirinae/ultraestrutura , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/ultraestrutura
3.
Proc Natl Acad Sci U S A ; 115(51): 13087-13092, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514821

RESUMO

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. SVV mediates cell entry by attachment to the receptor anthrax toxin receptor 1 (ANTXR1). Here we determine atomic structures of mature SVV particles alone and in complex with ANTXR1 in both neutral and acidic conditions, as well as empty "spent" particles in complex with ANTXR1 in acidic conditions by cryoelectron microscopy. SVV engages ANTXR1 mainly by the VP2 DF and VP1 CD loops, leading to structural changes in the VP1 GH loop and VP3 GH loop, which attenuate interprotomer interactions and destabilize the capsid assembly. Despite lying on the edge of the attachment site, VP2 D146 interacts with the metal ion in ANTXR1 and is required for cell entry. Though the individual substitution of most interacting residues abolishes receptor binding and virus propagation, a serine-to-alanine mutation at VP2 S177 significantly increases SVV proliferation. Acidification of the SVV-ANTXR1 complex results in a major reconfiguration of the pentameric capsid assemblies, which rotate ∼20° around the icosahedral fivefold axes to form a previously uncharacterized spent particle resembling a potential uncoating intermediate with remarkable perforations at both two- and threefold axes. These structures provide high-resolution snapshots of SVV entry, highlighting opportunities for anticancer therapeutic optimization.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas de Neoplasias/metabolismo , Picornaviridae/fisiologia , Receptores de Superfície Celular/metabolismo , Desenvelopamento do Vírus/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas dos Microfilamentos , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
4.
J Comput Aided Mol Des ; 32(11): 1217-1227, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30392073

RESUMO

Genetics experiments have identified six mutations located in the subdomain IA (A17V, R23H, G32D, G32S, R34K, V372I) of Ssa1 that influence propagation of the yeast [PSI+] prion. However, the underlining molecular mechanisms of these mutations are still unclear. The six mutation sites are present in the IA subdomain of the nucleotide-binding domain (NBD). The ATPase subdomain IA is a critical mediator of inter-domain allostery in Hsp70 molecular chaperones, so the mutation and changes in this subdomain may influence the function of the substrate-binding domain. In addition, ADP release is a rate-limiting step of the ATPase cycle and dysregulation of the ATPase cycle influences the propagation of the yeast [PSI+] prion. In this work, steered molecular dynamics (SMD) simulations were performed to explore the interaction between ADP and NBD. Results suggest that during the SMD simulations, hydrophobic interactions are predominant and variations in the binding state of ADP within the mutants is a potential reason for in vivo effects on yeast [PSI+] prion propagation. Additionally, we identify the primary residues in the ATPase domain that directly constitute the main hydrophobic interaction network and directly influence the ADP interaction state with the NBD of Ssa1. Furthermore, this in silico analysis reaffirms the importance of previously experimentally-determined residues in the Hsp70 ATPase domain involved in ADP binding and also identifies new residues potentially involved in this process.


Assuntos
Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Proteínas de Choque Térmico HSP70/química , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Sítios de Ligação , Simulação por Computador , Proteínas de Choque Térmico HSP70/genética , Mutação , Fatores de Terminação de Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/genética
5.
Chembiochem ; 19(14): 1465-1470, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29624826

RESUMO

Imaging live virus to monitor the viral entry process is essential to understand virus-host interactions during pathogen infection. However, methods for efficient labeling of live viruses, in particular labeling non-enveloped viruses and tracing virus entry processes, remain limited. Recently, labeling by using organometallic palladium reagents has provided a highly efficient and selective way to bioconjugate cysteines of virus proteins. Here, site-specific bioorthogonal labeling mediated by an organometallic palladium reagent on the surface of live enterovirus-71 (EV71) was used to visualize its entry into live cells. In contrast to currently used immunofluorescence and membrane-anchored dyes, this site-specific and quantitative labeling of live EV71 allows temporal imaging of its entry into host cell membranes on the timescale of seconds with little negative impact on its virulence. This method revealed details of EV71 virus entry and has broad applicability for monitoring virus entry that is difficult to assess by using conventional protein-labeling approaches.

6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 42(6): 629-634, 2017 Jun 28.
Artigo em Chinês | MEDLINE | ID: mdl-28690218

RESUMO

OBJECTIVE: To evaluate the safety of cardiac catheterization intervention therapy and transthoracic small incision surgery in the occlusion bydomestic occluder under echocardiography guiding in patients with atrial septal defect (ASD).
 Methods: A total of 1 080 patients with ASD in the occlusion by domestic occluder were analyzed retrospectively, and the interventional treatment were performed in 734 cases through cardiac catheterization intervention therapy and 346 cases through transthoracic small incision surgery. The patients undergone cardiac catheterization intervention therapy were guided under the digital substraction angiography (DSA) and were monitored by transthoracic echocardiography (TTE) in the whole interventional process, and the efficacy was evaluated with TTE. The occlusion of transthoracic small incision surgery was guided under the transesophageal echocardiography (TEE), which was used to monitor the position of occluder and evaluate the efficacy immediately.
 Results: Two kinds of intervention in the occlusion by domestic occluder had achieved satisfactory results in patients with ASD. There was no statistically difference in the longest size of ASD between the 2 intervention methods, while there were statistically differences in the ratio between ASD longest diameter and atrial septal length, and the size of the occlusion, and the disparity between the size of the occluder and ASD longest diameter (D value), respectively (all P<0.05). When the size of arithmetic mean of the ASD was <30 mm, the success rate of the 2 methods was both 100%. When the size of arithmetic mean of the ASD was ≥30 mm, the success rate was 100% in the transthoracic small incision surgery and 50% in the cardiac catheterization intervention therapy.
 Conclusion: Domestic occluder is safe. Compared with the imported one, its cost is lower. When the size of the defects is same, the occlusion is smaller in the transthoracic small incision surgery compared with that in the cardiac catheterization intervention therapy. When the size of arithmetic mean of the ASD is ≥30 mm, the success rate of the transthoracic small incision surgery is higher compared with the cardiac catheterization intervention therapy. When the cardiac catheterization intervention therapy fails, the transthoracic small incision surgery may be a better choice.


Assuntos
Cateterismo Cardíaco , Comunicação Interatrial/terapia , Dispositivo para Oclusão Septal , Ferida Cirúrgica , Ultrassonografia de Intervenção/métodos , Cateterismo Cardíaco/estatística & dados numéricos , Ecocardiografia Transesofagiana/métodos , Comunicação Interatrial/patologia , Humanos , Estudos Retrospectivos , Resultado do Tratamento
7.
Artigo em Inglês | MEDLINE | ID: mdl-28461310

RESUMO

Hand-foot-and-mouth disease (HFMD), caused by enterovirus, is a threat to public health worldwide. To date, enterovirus 71 (EV71) has been one of the major causative agents of HFMD in the Pacific-Asia region, and outbreaks with EV71 cause millions of infections. However, no drug is currently available for clinical therapeutics. In our previous works, we developed a set of protease inhibitors (PIs) targeting the EV71 3C protease (3Cpro). Among these are NK-1.8k and NK-1.9k, which have various active groups and high potencies and selectivities. In the study described here, we determined the structures of the PI NK-1.8k in complex with wild-type (WT) and drug-resistant EV71 3Cpro Comparison of these structures with the structure of unliganded EV71 3Cpro and its complex with AG7088 indicated that the mutation of N69 to a serine residue destabilized the S2 pocket. Thus, the mutation influenced the cleavage activity of EV71 3Cpro and the inhibitory activity of NK-1.8k in an in vitro protease assay and highlighted that site 69 is an additional key site for PI design. More information for the optimization of the P1' to P4 groups of PIs was also obtained from these structures. Together with the results of our previous works, these in-depth results elucidate the inhibitory mechanism of PIs and shed light to develop PIs for the clinical treatment of infections caused by EV71 and other enteroviruses.


Assuntos
Antivirais/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Enterovirus/enzimologia , Inibidores de Proteases/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteases Virais 3C , Antivirais/química , Doença de Mão, Pé e Boca/enzimologia , Doença de Mão, Pé e Boca/metabolismo , Isoxazóis/química , Isoxazóis/metabolismo , Mutação , Fenilalanina/análogos & derivados , Inibidores de Proteases/química , Estrutura Terciária de Proteína , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Valina/análogos & derivados
8.
Antiviral Res ; 141: 91-100, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28063993

RESUMO

Enterovirus 71 (EV71) is one of the major etiological agents of human hand-foot-and-mouth disease (HFMD) worldwide. EV71 infection in young children and people with immunodeficiency causes severe symptoms with a high fatality rates. However, there is still no approved drugs to treat such infections. Based on our previous report of a peptide-aldehyde anti-EV71 protease, we present here a highly specific α-hydroxy-nitrile derivative NK-1.9k, which inhibited the proliferation of multiple EV71 strains and coxsackievirus A16 (CVA16) in various cells with EC50 of 37.0 nM with low cytotoxicity (CC50 > 200 µM). The hydroxy-nitrile covalent warhead conferred NK-1.9k high potency and selectivity to interact with the cysteine residue of the active site of the viral protease. We also documented the resistance to NK-1.9k with a N69S mutation in EV71 3Cpro. The combination of NK-1.9k and EV71 polymerase or entry inhibitors produced strong synergistic antiviral effects. Collectively, our findings suggest our compounds can potentially be developed as drugs for the treatment of HFMD.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Nitrilas/farmacologia , Fenilalanina/análogos & derivados , Piridonas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/isolamento & purificação , Chlorocebus aethiops , Replicação do DNA/efeitos dos fármacos , Descoberta de Drogas , Enterovirus/efeitos dos fármacos , Enterovirus Humano A/genética , Enterovirus Humano A/fisiologia , Doença de Mão, Pé e Boca/tratamento farmacológico , Doença de Mão, Pé e Boca/virologia , Mutação , Nitrilas/química , Peptidomiméticos/química , Peptidomiméticos/isolamento & purificação , Peptidomiméticos/farmacologia , Fenilalanina/química , Fenilalanina/farmacologia , Piridonas/química , Células Vero
9.
Antiviral Res ; 126: 43-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26724382

RESUMO

Hepatitis disease caused by hepatitis C virus (HCV) is a severe threat to global public health, affecting approximately 3% of the world's population. Sofosbuvir (PSI-7977), a uridine nucleotide analog inhibitor targeting the HCV NS5B polymerase, was approved by FDA at the end of 2013 and represents a key step towards a new era in the management of HCV infection. Previous study identified NITD008, an adenosine nucleoside analog, as the specific inhibitor against dengue virus and showed good antiviral effect on other flaviviruses or enteroviruses. In this report, we systematically analyzed the anti-HCV profile of NITD008, which was discovered to effectively suppress the replication of different strains of HCV in human hepatoma cells with a low nanomolar activity. On genotype 2a virus, or 2a, 1a, and 1b replicon cells, EC50 values were 8.7 nM, 93.3 nM, 60.0 nM and 67.2 nM, and selective index values were >2298.9, >214.4, >333.3, >298.5 respectively. We demonstrated that resistance to NITD008 was conferred by mutation in NS5B (S282T) in the HCV infectious virus genotype 2a (JFH-1). Then, we compared the resistant profiles of NITD008 and PSI-7977, and found that the folds change of EC50 of NITD008 to full replicon cells containing mutation S282T was much bigger than PSI-7977(folds 76.50 vs. 4.52). Analysis of NITD008 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of NITD008 was not completely similar to PSI-7977, and meanwhile, S282T resistant mutation to NITD008 emerge more easily in cell culture than PSI-7977. Interestingly, NITD008 displayed significant synergistic effects with the NS5B polymerase inhibitor PSI-7977, however, only additive effects with alpha interferon (IFNα-2b), ribavirin, and an NS3 protease inhibitor. These results verify that NITD008 is an effective analog inhibitor against hepatitis C virus and a good research tool as a supplement to other types of nucleoside analogs.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Linhagem Celular , Farmacorresistência Viral , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Interferon-alfa/farmacologia , Mutação , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , RNA Viral/genética , Replicon/efeitos dos fármacos , Ribavirina/farmacologia , Sofosbuvir/química , Sofosbuvir/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
10.
J Virol ; 90(2): 1048-61, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559827

RESUMO

UNLABELLED: Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE: Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and in multiple biological functions. NP is also the exclusive target for the serological diagnoses. This work reveals the structure of hantavirus NP, furthering the knowledge of hantavirus RNP formation, revealing the relationship between hantavirus NP and serological specificity and raising the potential for the development of new diagnosis and therapeutics targeting hantavirus infection.


Assuntos
Proteínas do Nucleocapsídeo/química , Orthohantavírus/química , Ribonucleoproteínas/química , Vírus Sin Nombre/química , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Proteínas do Nucleocapsídeo/ultraestrutura , Conformação Proteica , Ribonucleoproteínas/ultraestrutura
11.
J Med Chem ; 58(23): 9414-20, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26571192

RESUMO

Cyanohydrin derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. Compared with the reported inhibitors, cyanohydrins (1S,2S,2'S,5S)-16 and (1R,2S,2'S,5S)-16 exhibited significantly improved activity and attractive selectivity profiles against other proteases, which were a result of the specific interactions between the cyanohydrin moiety and the catalytic site of 3C(pro). Cyanohydrin as an anchoring group with high selectivity and excellent inhibitory activity represents a useful choice for cysteine protease inhibitors.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/enzimologia , Infecções por Enterovirus/virologia , Nitrilas/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Antivirais/química , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Nitrilas/química , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(30): 9436-41, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26159422

RESUMO

Nonstructural protein 14 (nsp14) of coronaviruses (CoV) is important for viral replication and transcription. The N-terminal exoribonuclease (ExoN) domain plays a proofreading role for prevention of lethal mutagenesis, and the C-terminal domain functions as a (guanine-N7) methyl transferase (N7-MTase) for mRNA capping. The molecular basis of both these functions is unknown. Here, we describe crystal structures of severe acute respiratory syndrome (SARS)-CoV nsp14 in complex with its activator nonstructural protein10 (nsp10) and functional ligands. One molecule of nsp10 interacts with ExoN of nsp14 to stabilize it and stimulate its activity. Although the catalytic core of nsp14 ExoN is reminiscent of proofreading exonucleases, the presence of two zinc fingers sets it apart from homologs. Mutagenesis studies indicate that both these zinc fingers are essential for the function of nsp14. We show that a DEEDh (the five catalytic amino acids) motif drives nucleotide excision. The N7-MTase domain exhibits a noncanonical MTase fold with a rare ß-sheet insertion and a peripheral zinc finger. The cap-precursor guanosine-P3-adenosine-5',5'-triphosphate and S-adenosyl methionine bind in proximity in a highly constricted pocket between two ß-sheets to accomplish methyl transfer. Our studies provide the first glimpses, to our knowledge, into the architecture of the nsp14-nsp10 complex involved in RNA viral proofreading.


Assuntos
Exorribonucleases/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Escherichia coli/metabolismo , Ligantes , Metiltransferases/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Replicação Viral/genética , Dedos de Zinco
13.
Antimicrob Agents Chemother ; 59(5): 2636-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691647

RESUMO

Enterovirus (EV) is one of the major causative agents of hand, foot, and mouth disease in the Pacific-Asia region. In particular, EV71 causes severe central nervous system infections, and the fatality rates from EV71 infection are high. Moreover, an outbreak of respiratory illnesses caused by an emerging EV, EV68, recently occurred among over 1,000 young children in the United States and was also associated with neurological infections. Although enterovirus has emerged as a considerable global public health threat, no antiviral drug for clinical use is available. In the present work, we screened our compound library for agents targeting viral protease and identified a peptidyl aldehyde, NK-1.8k, that inhibits the proliferation of different EV71 strains and one EV68 strain and that had a 50% effective concentration of 90 nM. Low cytotoxicity (50% cytotoxic concentration, >200 µM) indicated a high selective index of over 2,000. We further characterized a single amino acid substitution inside protease 3C (3C(pro)), N69S, which conferred EV71 resistance to NK-1.8k, possibly by increasing the flexibility of the substrate binding pocket of 3C(pro). The combination of NK-1.8k and an EV71 RNA-dependent RNA polymerase inhibitor or entry inhibitor exhibited a strong synergistic anti-EV71 effect. Our findings suggest that NK-1.8k could potentially be developed for anti-EV therapy.


Assuntos
Aldeídos/farmacologia , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Aldeídos/efeitos adversos , Animais , Antivirais/efeitos adversos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Cisteína Endopeptidases/genética , Ativação Enzimática/efeitos dos fármacos , Células Vero , Proteínas Virais/genética
14.
Oncotarget ; 6(3): 1695-706, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25633808

RESUMO

Human epidermal growth factor receptors (HERs or ErbBs) play crucial roles in numerous cellular processes. ErbB2 is a key member of ErbB family, and its overexpression is recognized as a frequent molecular abnormality. In cancer, this overexpression correlates with aggressive disease and poor patient outcomes. Dimer-dependent phosphorylation is a key event for the signal transduction of ErbBs. However, the molecular mechanism of the dimerization of ErbB2 remains elusive. In the present work, we report the homodimer architecture of the ErbB2 extracellular domain (ECD) which is unique compared with other dimer-models of ErbBs. The structure of the ErbB2 ECD homodimer represents a "back to head" interaction, in which a protruding ß-hairpin arm in domain II of one ErbB2 protomer is inserted into a C-shaped pocket created by domains I-III of the adjacent ErbB2 protomer. This dimerized architecture and its impact on the phosphorylation of ErbB2 intracellular domain were further verified by a mutagenesis study. We also elucidated the different impacts of two clinically administered therapeutic antibodies, trastuzumab and pertuzumab, on ErbB2 dimerization. This information not only provides an understanding of the molecular mechanism of ErbBs dimerization but also elucidates ErbB2-targeted therapy at the molecular level.


Assuntos
Receptor ErbB-2/química , Receptor ErbB-2/genética , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oncogenes , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
15.
Antimicrob Agents Chemother ; 59(4): 1827-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25421478

RESUMO

Enterovirus 71 (EV71), a primary pathogen of hand, foot, and mouth disease (HFMD), affects primarily infants and children. Currently, there are no effective drugs against HFMD. EV71 3C protease performs multiple tasks in the viral replication, which makes it an ideal antiviral target. We synthesized a small set of fluorogenic model peptides derived from cleavage sites of EV71 polyprotein and examined their efficiencies of cleavage by EV71 3C protease. The novel peptide P08 [(2-(N-methylamino)benzoyl) (NMA)-IEALFQGPPK(DNP)FR] was determined to be the most efficiently cleaved by EV71 3C protease, with a kinetic constant kcat/Km of 11.8 ± 0.82 mM(-1) min(-1). Compared with literature reports, P08 gave significant improvement in the signal/background ratio, which makes it an attractive substrate for assay development. A Molecular dynamics simulation study elaborated the interactions between substrate P08 and EV71 3C protease. Arg39, which is located at the bottom of the S2 pocket of EV71 3C protease, may participate in the proteolysis process of substrates. With an aim to evaluate EV71 3C protease inhibitors, a reliable and robust biochemical assay with a Z' factor of 0.87 ± 0.05 was developed. A novel compound (compound 3) (50% inhibitory concentration [IC50] = 1.89 ± 0.25 µM) was discovered using this assay, which effectively suppressed the proliferation of EV 71 (strain Fuyang) in rhabdomyosarcoma (RD) cells with a highly selective index (50% effective concentration [EC50] = 4.54 ± 0.51 µM; 50% cytotoxic concentration [CC50] > 100 µM). This fast and efficient assay for lead discovery and optimization provides an ideal platform for anti-EV71 drug development targeting 3C protease.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Enterovirus/enzimologia , Corantes Fluorescentes/síntese química , Vírus da Febre Aftosa/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Sequência de Aminoácidos , Bioensaio , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/biossíntese , Humanos , Cinética , Dados de Sequência Molecular , Especificidade por Substrato , Proteínas Virais/biossíntese
16.
Antiviral Res ; 112: 47-58, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446894

RESUMO

Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adenosina/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Sinergismo Farmacológico , Enterovirus Humano A/enzimologia , Enterovirus Humano A/fisiologia , Humanos , Isoxazóis/farmacologia , Fenilalanina/análogos & derivados , Pirrolidinonas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Valina/análogos & derivados
18.
Trends Pharmacol Sci ; 35(2): 86-102, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24439476

RESUMO

The prevalence of chronic viral infectious diseases, such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus; the emergence and re-emergence of new viral infections, such as picornaviruses and coronaviruses; and, particularly, resistance to currently used antiviral drugs have led to increased demand for new antiviral strategies and reagents. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host factors. Virus-targeting antivirals can function directly or indirectly to inhibit the biological functions of viral proteins, mostly enzymatic activities, or to block viral replication machinery. Host-targeting antivirals target the host proteins that are involved in the viral life cycle, regulating the function of the immune system or other cellular processes in host cells. Here we review key targets and considerations for the development of both antiviral strategies.


Assuntos
Antivirais/farmacologia , Viroses/tratamento farmacológico , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Peptídeos/farmacologia
19.
Proc Natl Acad Sci U S A ; 110(22): 9048-53, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23569257

RESUMO

Bunyamwera virus (BUNV), which belongs to the genus Orthobunyavirus, is the prototypical virus of the Bunyaviridae family. Similar to other negative-sense single-stranded RNA viruses, bunyaviruses possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation and virus replication. The structures of two NPs of members of different genera within the Bunyaviridae family have been reported. However, their structures, RNA-binding features, and functions beyond RNA binding significantly differ from one another. Here, we report the crystal structure of the BUNV NP-RNA complex. The polypeptide of the BUNV NP was found to possess a distinct fold among viral NPs. An N-terminal arm and a C-terminal tail were found to interact with neighboring NP protomers to form a tetrameric ring-shaped organization. Each protomer bound a 10-nt RNA molecule, which was acquired from the expression host, in the positively charged crevice between the N and C lobes. Inhomogeneous oligomerization was observed for the recombinant BUNV NP-RNA complex, which was similar to the Rift Valley fever virus NP-RNA complex. This result suggested that the flexibility of one NP protomer with adjacent protomers underlies the BUNV ribonucleoprotein complex (RNP) formation. Electron microscopy revealed that the monomer-sized NP-RNA complex was the building block of the natural BUNV RNP. Combined with previous results indicating that mutagenesis of the interprotomer or protein-RNA interface affects BUNV replication, our structure provides a great potential for understanding the mechanism underlying negative-sense single-stranded RNA RNP formation and enables the development of antiviral therapies targeting BUNV RNP formation.


Assuntos
Vírus Bunyamwera/genética , Modelos Moleculares , Proteínas do Nucleocapsídeo/química , Conformação Proteica , RNA Viral/química , Montagem de Vírus/fisiologia , Clonagem Molecular , Cristalografia por Raios X , Vetores Genéticos/genética , Microscopia Eletrônica , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Montagem de Vírus/genética
20.
J Inorg Biochem ; 105(12): 1623-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22071087

RESUMO

A new series of complexes of a ligand 4', 7, 8-trihydroxy-isoflavone with transition metal (zinc, copper, manganese, nickel, cobalt) and selenium have been synthesized and characterized with the aid of elemental analysis, IR, electron ionization mass spectrum (EI-MS) and (1)H NMR spectrometric techniques. The compounds were evaluated for their in vitro antibacterial activities and antitumor properties. The metal complexes were found to be more active than the free ligand. Investigation on the interaction between the complexes and calf-thymus DNA (CT DNA) showed that the absorbance of CT DNA increased and the maximum peak (λ(max)=260 nm) red-shifted, while the intensity of fluorescence spectra of Epstein-Bart DNA (EB-DNA) gradually weakened, which indicated that all of these metal complexes tightly combined with CT DNA.


Assuntos
Antibacterianos/síntese química , Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Isoflavonas/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Ligação Competitiva , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , Etídio/química , Humanos , Substâncias Intercalantes/química , Isoflavonas/química , Isoflavonas/farmacologia , Metais Pesados , Testes de Sensibilidade Microbiana , Selênio , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA