Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Aging (Albany NY) ; 16(5): 4445-4468, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38421251

RESUMO

Most cancers have a downregulation of Fidgetin (FIGN), which has been linked to tumor growth. However, there aren't many papers that mention FIGN's connection to hepatocellular carcinoma (HCC). Here, FIGN expression in HCC tissues was markedly reduced as compared to nearby normal liver tissues. According to univariate and multivariate Cox regression, it served as an independent predictor of survival outcomes. Patients with high levels of FIGN expression had a worse outcome. FIGN was shown to be engaged in immune-related pathways and to have a positive correlation with immunological score and immune cells according to KEGG pathway analysis. In HCC patients, FIGN was substantially linked with immunological checkpoints and the hot tumor state. Additionally, immunotherapy and chemotherapy showed a significant therapeutic response in HCC patients with low FIGN expression. This research revealed that FIGN expression was tightly related to hepatoma immunity and might be employed as a biomarker to predict patient prognosis and guide medication.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Imunoterapia , Regulação para Baixo , Microambiente Tumoral , Prognóstico
2.
Front Mol Neurosci ; 17: 1335404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361743

RESUMO

Introduction: Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods: MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results: A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion: In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.

3.
Int J Gen Med ; 16: 2831-2848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426517

RESUMO

Background: Osteosarcoma is a malignant tumor originating from the skeletal system. There is no effective treatment other than surgery and chemotherapy, which seriously endangers the health of children and adolescents. NEK6 is a novel discovered Serine/Threonine protein kinase that can regulate cell cycle and activate several oncogenic pathways. Methods: NEK6 expression in pan-cancer including sarcoma was evaluated using analysis tools of TIMER, UALCNA and GEPIA with TCGA database, and its association with overall survival in patients with sarcoma was also analyzed. TargetScan, tarbase, microT-CDS and Starbase online software were used to predict NEK6-targeted miRNAs, including miR-26a-5p. Tumor tissues from patients with osteosarcoma were collected for NEK6 and miRNA detection using RT-qPCR. NEK6 down-regulated by siRNAs or miR-26a-5p in osteosarcoma cells was detected by RT-qPCR, Western blot and Immunofluorescence staining assays. Effects of NEK6 knockdown on proliferation, migration, invasion and apoptosis of osteosarcoma cells were detected by CCK-8, wound healing, transwell and flow cytometry, respectively. The expressions of STAT3, metastasis and apoptosis-related genes were detected by Western blot. Results: High expression of NEK6 and low expression of miR-26a-5p were lowly expressed in osteosarcoma and they were negative correlation. NEK6 has been confirmed as a direct target for miR-26a-5p. In addition, NEK6 down-regulated by siRNAs or miR-26a-5p led to inhibition of cell proliferation, migration and invasion while promoting cell apoptosis. The levels of phosphorylated STAT3 and metastasis genes (MMP-2, MMP-9) were inhibited, while apoptotic gene Bax was promoted and Bcl2 was inhibited by miR-26a-5p upregulation. Conclusion: NEK6 can promote osteosarcoma progression via activating STAT3 signaling pathway, which is inhibited by miR-26a-5p, suggesting that NEK6 is a potential oncogene and miR-26a-5p is a suppressor of osteosarcoma. The strategy of inhibiting of NEK6 by miR-26a-5p may be an effective approach for osteosarcoma therapy.

4.
Fish Shellfish Immunol ; 138: 108826, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201732

RESUMO

Herpesviral hematopoietic necrosis disease causes by cyprinid herpesvirus 2 (CyHV-2) infection is a high mortality disease that leads to great economic damage to gibel carp, Carassius auratus gibelio aquaculture. In this study, an attenuated strain of CyHV-2 G-RP7 was achieved by subculture on RyuF-2 cells derived from the fin of Ryukin-variety goldfish and GiCF cells derived from fin of gibel carp. As the attenuated vaccine candidate, there are no clinical symptoms of gibel carp that immersion or intraperitoneal injection with G-RP7 strain. The protection rates of G-PR7 to gibel carp by immersion and intraperitoneal injection were 92% and 100%, respectively. In the test for virulence reversion, the candidate was propagated through gibel carp six times by intraperitoneal injection with kidney and spleen homogenate of the inoculated fish. During in vivo passages in gibel carp, no abnormality and mortality of the inoculated fish were observed, and the virus DNA copies maintain a low level from the first passage to the sixth passage. The dynamic of virus DNA in each tissue of G-RP7 vaccination fish increased within 1, 3, and 5 days post-immunization, and subsequently decreased and stabilized within 7 and 14 days. In addition, the increase of anti-virus antibody titer was detected both immersion and injection immunization fish 21 days after vaccination by ELISA. These results demonstrated that G-RP7 can be a promising live attenuated vaccine candidate against the disease.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Carpa Dourada , Vacinas Atenuadas , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Vírus de DNA/genética , Necrose , DNA Viral
5.
Mol Biol Rep ; 49(7): 6459-6466, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581507

RESUMO

Lumbar facet osteoarthritis (FJOA) is a major cause of severe lower back pain and disability worldwide. However, the mechanism underlying cartilage degeneration in FJOA remains unclear. The purpose of this study was to investigate the regulation and mechanism of P2Y12 on chondrocyte apoptosis in FJOA. The experimental rats were randomly divided into non-operation (n = 20) and operation groups (n = 20). In the operation group, Sodium iodoacetate (MIA, Sigma, 200 mg/mL) was injected into the right L4/5 facet process using a blunt nanoneedle 26 (WPI, Sarasota, FL, USA) under the control of an injection pump. The final injection volume was 5µL and the injection rate was 2µL/min. The facet joint was removed four weeks after surgery. After the operation, samples were stored at -80 °C until further use, whereby the right facet joints in each group were tested. Hematoxylin and eosin (HE) and iron-red solid green staining were used to observe the degeneration of articular chondrocytes in rats. Immunohistochemistry and western blotting were used to observe the expressions of P2Y12, Matrix metalloproteinase 13 (MMP13), Collagen II (COL2), and other cartilage degeneration and apoptosis-related genes. Co-localization of P2Y12-cleaved caspase-3 in the apoptosis model was detected by dual-standard immunofluorescence staining. Apoptosis was also detected by flow cytometry and TUNEL assay.P2Y12 is highly expressed in OA cartilage tissue, and inhibits IL-1ß -induced chondrocyte apoptosis through PI3K/AKT signaling pathway, thus playing a certain protective role on cartilage.


Assuntos
Condrócitos , Osteoartrite da Coluna Vertebral , Receptores Purinérgicos P2Y12/metabolismo , Animais , Apoptose , Condrócitos/metabolismo , Osteoartrite da Coluna Vertebral/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima
6.
J Physiol Biochem ; 78(2): 427-437, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35253089

RESUMO

Bcl2-associated athanogene3 (BAG3) protein, mainly induced by stressful stimuli, has been confirmed to participate in apoptosis and autophagy. In recent studies, BAG3 has gradually become a key molecule in tumors. However, the role of BAG3 in the progression of lumbar facet joint osteoarthritis (FJOA) and whether it can regulate chondrocyte apoptosis and autophagy are still unknown. In both human and FJOA rat models, we observed an upregulation of BAG3 and apoptosis and autophagy-related proteins compared with healthy tissues. Then, we established the chondrocytes injury model in vitro by using IL-1ß to stimulate human SW1353 cells. Western blot analysis data showed significant expression of BAG3, apoptosis, and autophagy-related proteins in SW1353 cells. Finally, by knocking down and overexpressing BAG3, we discovered possible anti-apoptotic and autophagy-promoted effects of BAG3 in FJOA through various experimental methods. This study demonstrated that BAG3 actively participates in regulating chondrocyte apoptosis and autophagy in FJOA and may be a highly interesting target for pharmacological interventions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Osteoartrite , Articulação Zigapofisária , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Condrócitos/metabolismo , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos , Articulação Zigapofisária/metabolismo , Articulação Zigapofisária/patologia
8.
Mol Cell Biochem ; 476(4): 1929-1938, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33502650

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6), a regulator of NF-κB signaling, has been discovered recently to be probably related to osteoarthritis, while the function of TRAF6 in lumbar facet joint osteoarthritis(FJOA)still remains unknown. The aim of this study was to probe the specific function of TRAF6 in chondrocytes and its connection with the pathophysiology of FJOA. We found upregulation of TRAF6 in FJOA cartilage by western blot analysis. In vitro, we stimulated immortalized human chondrocytes by LPS to establish the cells apoptosis model. Western blot analysis demonstrated that levels of TRAF6 and cleaved caspase-3/8 in the chondrocyte injury model increased significantly. Knockdown of TRAF6 suppressed the expression of matrix metallopeptidase-13 (MMP-13) and interleukin-6 (IL-6) induced by LPS, and alleviated cell apoptosis. Meanwhile, western blot and immunofluorescent staining demonstrated that IκBα degradation and p65 nuclear transportation were also inhibited, revealing that knockdown of TRAF6 suppressed activation of the NF-κB pathway in LPS-induced chondrocytes apoptosis model. Collectively, our findings suggest that TRAF6 plays a crucial role in FJOA development by regulating NF-κB signaling pathway. Knockdown of TRAF6 may supply a potential therapeutic strategy for FJOA.


Assuntos
Apoptose , Condrócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Osteoartrite da Coluna Vertebral/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Articulação Zigapofisária/metabolismo , Linhagem Celular Transformada , Condrócitos/patologia , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteoartrite da Coluna Vertebral/genética , Osteoartrite da Coluna Vertebral/patologia , Fator de Transcrição RelA/genética , Articulação Zigapofisária/patologia
9.
J Mol Histol ; 51(4): 401-410, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32632701

RESUMO

The pathophysiological changes in cartilage are a crucial feature of lumbar facet joint (LFJ) degeneration and arthritis. However, the molecular mechanism of human LFJ degeneration remains largely defined. This study aimed to examine the changes in chondrocytes at different stages of degenerative LFJ using hematoxylin and eosin and Safranin O staining. The significant loss of chondrocytes in grades 2 and 3 of LFJs was observed. The expression levels of CCAAT enhancer binding protein ß (C/EBPß), Runt-related transcription factor 2 (RUNX2), and matrix metalloproteinase 13 (MMP13) also increased with the aggravation of degeneration (4.89, 5.77, and 6.3 times by Western blot). In vitro, chondrocytes scraped from the LFJs during surgery were stimulated by interleukin (IL)-1ß to establish the injury model. The association of C/EBPß and RUNX2 with active caspase-3 on chondrocytes was analyzed. The high expression level of C/EBPß, RUNX2, and MMP13 was consistent with that of caspase-3, which reached a peak after 36 h of stimulation. Immunofluorescence suggested that C/EBPß, RUNX2, and MMP13 co-labeled with active caspase-3. Moreover, immunoprecipitation data prompted that C/EBPß was able to interact with RUNX2. The knockdown of C/EBPß significantly decreased the expression levels of MMP13 and active caspase-3 (2.48 and 2.89 times as detected by Western blot analysis) and inhibited chondrocyte apoptosis, which was further demonstrated using flow cytometry. Taken together, the findings of this study uncovered that C/EBPß could interact with RUNX2 to induce chondrocyte apoptosis in human LFJ degeneration by regulating the expression of MMP13.


Assuntos
Apoptose/fisiologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Osteoartrite/metabolismo , Articulação Zigapofisária/metabolismo , Adulto , Caspase 3/metabolismo , Células Cultivadas , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade
10.
Exp Ther Med ; 19(4): 2997-3008, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32256786

RESUMO

Facet joint osteoarthritis (FJOA) is a common degenerative joint disorder with high prevalence in the elderly. FJOA causes lower back pain and lower extremity pain, and thus severely impacts the quality of life of affected patients. Emerging studies have focused on the histomorphological and histomorphometric changes in FJOA. However, the dynamic genetic changes in FJOA have remained to be clearly determined. In the present study, previously obtained RNA deep sequencing data were subjected to an ingenuity pathway analysis (IPA) and canonical signaling pathways of differentially expressed genes (DEGs) in FJOA were studied. The top 25 enriched canonical signaling pathways were identified and canonical signaling pathways with high absolute values of z-scores, specifically leukocyte extravasation signaling, Tec kinase signaling and osteoarthritis pathway, were investigated in detail. DEGs were further categorized by disease, biological function and toxicity (tox) function. The genetic networks between DEGs as well as hub genes in these functional networks were also investigated. It was demonstrated that C-X-C motif chemokine ligand 8, elastase, neutrophil expressed, growth factor independent 1 transcriptional repressor, Spi-1 proto-oncogene, CCAAT enhancer binding protein epsilon, GATA binding protein 1, TAL bHLH transcription factor 1, erythroid differentiation factor, minichromosome maintenance complex component 4, BTG anti-proliferation factor 2, BRCA1 DNA repair-associated, cyclin D1, chromatin assembly factor 1 subunit A, triggering receptor expressed on myeloid cells 1 and tumor protein p63 were hub genes in the top 5 IPA networks (with a score >30). The present study provides insight into the pathological processes of FJOA from a genetic perspective and may thus benefit the clinical treatment of FJOA.

11.
J Cell Biochem ; 120(4): 5355-5366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320922

RESUMO

Traumatic spinal cord injury is a common and severe complication after an accident. As we all know that neurite outgrowth of neurons is difficult after a spinal cord injury. Endosome system is associated with cargoes transportation and contributes in promoting the neuronal capability for neurite outgrowth. EH domain-containing protein 1 (EHD1) transports proteins through the endosome system, especially in the recycling endosomes and regulating the neurite outgrowth. In mammalian cells, the involvement of the ubiquitin-proteasome system in endosomal sorting has been well established. Two RING fingers and a DRIL (double RING finger-linked) 1 (Triad1) plays an important role in membrane trafficking and its mutant results in the wrong accumulation of receptors in endosomes and plasma membrane. In this current study, we reasonably integrated the results of the above research and investigated the regulating function of Triad1 to EHD1 following the spinal cord injury. We characterized the upregulated expression and distribution of Triad1 and EHD1 in the neurons after SCI and declared the interaction between Triad1 with EHD1 both in vitro and in vivo. Triad1 regulated the interaction between itself and the full-length or EH domain of EHD1, which influenced the neurite outgrowth of PC12 cells. Our data delineate a novel interaction between Triad1 and EHD1 that may contribute to the regulation of neurite outgrowth for neurons after the spinal cord injury.


Assuntos
Neuritos/metabolismo , Traumatismos da Medula Espinal/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/genética , Animais , Membrana Celular/genética , Modelos Animais de Doenças , Endossomos/genética , Regulação da Expressão Gênica/genética , Humanos , Neuritos/patologia , Neurônios/metabolismo , Neurônios/patologia , Células PC12 , Ratos , Traumatismos da Medula Espinal/patologia , Ubiquitina/genética
12.
Biofouling ; 34(7): 731-739, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30322270

RESUMO

This article describes an electrochemical method to remove bacterial biofilm from a stainless steel (SS) surface using a potential pulse/reverse pulse technique. This technique employs a periodic waveform that consists of anodic and cathodic pulses. The pulses can effectively strip a thin layer of metal off the SS surface, along with the adherent biofilm, in a saline solution. Not only can the pulses effectively remove biofilm from the SS surface, but they also regenerate the original mirror-like shiny surface. The importance of this electrochemical biofilm removal method is its wide applicability for any types of biofilms. That is, instead of directly removing the biofilm, it removes a very thin layer of the metal under the biofilm. Thus, the removal process is independent to the nature of the biofilms. Furthermore, this electrochemical biofilm removal method is rapid (less than 30 s of potential pulse time) and does not require hazardous chemicals.


Assuntos
Biofilmes , Técnicas Eletroquímicas/métodos , Eletrodos , Aço Inoxidável , Staphylococcus epidermidis
13.
Biochem Biophys Res Commun ; 503(3): 1659-1665, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30054040

RESUMO

Tumor necrosis factor receptor-associated factor 2 (TRAF2) has been demonstrated that it plays a significant role in cell death receptor signal transduction. The purpose of this study was to investigate the expression of TRAF2 and its possible role in FJOA. We observed an up-regulation of TRAF2 in FJOA by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) compared to normal tissues. In vitro, we used TNF-α to stimulate Human SW1353 chondrosarcoma cells to establish the chondrocytes injury model. Western blot analysis revealed significant expression of TRAF2 and cleaved caspase-3/8 in SW1353 cells. Co-localization of TRAF2/cleaved caspase-3/8 was detected in the cells injury model by double-labeling immunofluorescent staining. We demonstrated a possible anti-apoptotic effect of TRAF2 in chondrocyte apoptosis in FJOA by knockdown of its expression with siRNA. Moreover, TRAF2 knockdown was demonstrated to enhance TNF-α-induced apoptosis by flow cytometry assay. In conclusion, our results show that the up-regulation of TRAF2 may play an important role in the inhibition of chondrocyte apoptosis of FJOA.


Assuntos
Apoptose , Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite/fisiopatologia , Fator 2 Associado a Receptor de TNF/metabolismo , Regulação para Cima , Articulação Zigapofisária/metabolismo , Humanos , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteoartrite/patologia , Articulação Zigapofisária/patologia
14.
Neurochem Res ; 43(8): 1631-1640, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29934689

RESUMO

E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1ß and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.


Assuntos
Microglia/efeitos dos fármacos , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Medula Espinal/fisiopatologia , Animais , Sequência de Bases , Constrição , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-cbl/genética , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Fator de Necrose Tumoral alfa/farmacologia
15.
J Mater Chem B ; 6(10): 1452-1457, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254209

RESUMO

Candida-associated denture stomatitis (CADS) is a common, recurring clinical complication in denture wearers that can lead to serious oral and systemic health problems. Current management strategies are not satisfactory due to their short-acting and ineffective therapeutic effects. Here, we describe a new fungal biofilm controlling strategy using the polyelectrolyte layer-by-layer (LBL) self-assembly technology on denture materials. Conventional poly(methyl methacrylate) (PMMA) denture material discs were functionalized with negatively charged poly(methacrylic acid) (PMAA) via plasma-initiated surface grafting, followed by repetitive alternating coating with the salivary antimicrobial polypeptide histatin 5 (H-5; cationic polymer) and hyaluronic acid (HA; anionic polymer). On the other hand, the H-5/HA LBL coatings (i.e., the outermost layer was H-5) inhibited fungal attachment/adhesion, significantly reduced fungal biofilm formation, and showed synergistic effects with the antifungal drug miconazole. LBL surface hydrophilicity was not the key mechanism in controlling Candida biofilm formation. The current approach demonstrates the utility of a new design principle for fabricating anticandidal denture materials, as well as potentially other related medical devices, for controlling fungal biofilm formation and combating insidious infections.

16.
Neurochem Res ; 42(4): 1015-1025, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28005222

RESUMO

Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, ßIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adolescente , Diferenciação Celular/fisiologia , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/fisiologia , Humanos , Regeneração Nervosa/fisiologia , Células-Tronco/fisiologia , Adulto Jovem
17.
Neurochem Res ; 41(11): 3103-3112, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27514644

RESUMO

Spinal cord injury (SCI) is one of the most common and severe complications in spine injury. It is difficult to prevent cell necroptosis and promote the survival of residual neurons after SCI. Proteasome beta-4 subunit (PSMB4) is the first proteasomal subunit with oncogenic properties promoting cancer cell survival and tumor growth in vivo, and our previous study showed that PSMB4 is significantly associated with neuronal apoptosis in neuroinflammation. However, PSMB4 function in the necroptosis after SCI is unkown. RIP3, a key regulatory factor of necroptosis, correlates with the induction of necroptosis in various types of cells and signaling pathway. Upregulation of the RIP3 expression may play a role as a novel molecular mechanism in secondary neural tissue damage following SCI. In this study, we established an acute spinal cord contusion injury model in adult rats to investigate the potential role of PSMB4 during the pathological process of SCI. We found PSMB4 expression was significantly up-regulated 3 days after injury by western blot and immunohistochemical staining. Double immunofluorescent staining indicated obvious changes of PSMB4 expression occurred in neurons. Significant up-regulation of PSMB4 expression was observed in Rip3 positive neurons at 3 days after SCI, which indicated that PSMB4 might play a vital role in the regulation of Rip3. Overexpress and knockdown PSMB4 could intervene the RIP3 and Mixed lineage kinase domain-like protein (MLKL) pathway in Tumor necrosis factor-α (TNF-α) induced necroptosis cell model. Based on our experimental data, we boldly conclude that PSMB4 is associated with RIP3 involved necroptosis after SCI.


Assuntos
Apoptose/fisiologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Necrose , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Ativação Transcricional/fisiologia , Regulação para Cima
18.
Cell Tissue Res ; 366(1): 129-42, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27147262

RESUMO

Cell-based transplantation strategies hold great potential for spinal cord injury (SCI) repair. Chitosan scaffolds have therapeutic benefits for spinal cord regeneration. Human dental pulp stem cells (DPSCs) are abundant available stem cells with low immunological incompatibility and can be considered for cell replacement therapy. The purpose of this study is to investigate the role of chitosan scaffolds in the neural differentiation of DPSCs in vitro and to assess the supportive effects of chitosan scaffolds in an animal model of SCI. DPSCs were incubated with chitosan scaffolds. Cell viability and the secretion of neurotrophic factors were analyzed. DPSCs incubated with chitosan scaffolds were treated with neural differentiation medium for 14 days and then neural genes and protein markers were analyzed by Western blot and reverse transcription plus the polymerase chain reaction. Our study revealed a higher cell viability and neural differentiation in the DPSC/chitosan-scaffold group. Compared with the control group, the levels of BDNF, GDNF, b-NGF, and NT-3 were significantly increased in the DPSC/chitosan-scaffold group. The Wnt/ß-catenin signaling pathway played a key role in the neural differentiation of DPSCs combined with chitosan scaffolds. Transplantation of DPSCs together with chitosan scaffolds into an SCI rat model resulted in the marked recovery of hind limb locomotor functions. Thus, chitosan scaffolds were non-cytotoxic and provided a conducive and favorable microenvironment for the survival and neural differentiation of DPSCs. Transplantation of DPSCs might therefore be a suitable candidate for treating SCI and other neuronal degenerative diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/farmacologia , Polpa Dentária/citologia , Neurônios/citologia , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Alicerces Teciduais/química , Adolescente , Animais , Caspase 3/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Células-Tronco/ultraestrutura , Via de Sinalização Wnt/efeitos dos fármacos , Adulto Jovem , beta Catenina/metabolismo
19.
Int J Dev Neurosci ; 52: 24-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27211346

RESUMO

Traumatic spinal cord injury is one of the most common and severe problems for using NGF to promote the neurite outgrowth of survival neurons. EHD1 regulates and controls the endocytosis and transportation of neurotrophins and transmembrane cargo via recycling endosome for neurite outgrowth. TrkA is particularly considered to be a functional specific recepter in the cell membrane for NGF and is activated upon NGF binding. The transcytosis of TrkA is dependent on Rab11 recycling endosomes and is promoted by NGF signaling itself at the axon terminal. In this study, we established an acute spinal cord contusion injury model in adult rats to investigate the potential role of EHD1 during the pathological process of SCI. Western blot analysis suggested that EHD1 expression was low in the sham-operated adult rat spinal cords and was significantly up-regulated 1d after injury. Immunohistochemical staining detected the general distribution of EHD1 protein in both the gray and white matter of adult rat spinal cords. Double immunofluorescent staining indicated that EHD1 was expressed in neurons, astrocytes and microglias in the adult rat spinal cord, and obvious changes of EHD1 expression occurred in neurons during SCI pathological process. Significant up-regulation of EHD1 expression was observed in MAP2 positive neurons at 1 day after SCI, in comparison with the sham-operated control, which indicated that EHD1 might play a vital role in neurite outgrowth. Our data indicated that EHD1 could interact with TrkA, and is in the upstream of TrkA. EHD1 up-regulated the expression of TrkA in the glutamate stimulated primary neurons. Based on our experimental data, we boldly conclude that EHD1 regulates the recycling of TrkA back to cell membrane, improving the utilization efficiency of the NGF, which is vital for neurite outgrowth and functional recovery after spinal cord injury.


Assuntos
Regulação da Expressão Gênica/fisiologia , Crescimento Neuronal/fisiologia , Neurônios/citologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ácido Glutâmico/farmacologia , Imunoprecipitação , Técnicas In Vitro , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Fatores de Tempo , Transfecção
20.
J Biomed Mater Res A ; 104(3): 586-594, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26488154

RESUMO

Biomaterial-related infections (BRIs) have become a major challenge in the field of orthopedic implants. In this study, we delved into the problem of BRI and attempted to reduce the possibility of BRI incidence via surface modification of titanium (Ti) with chitosan (SA-CS-Ti). To comprehensively evaluate the anti-infection potential of SA-CS-Ti, we first constructed a postoperative infection (POI) model with varying concentrations of bacteria (102  CFU/sample and 104  CFU/sample) and a constant number of SaOS-2 cells (105 /sample). Then, we biologically characterized the interactions between the SaOS-2 cells, bacteria, and different Ti implants using the POI model. The results from the osteoblastic cell and bacterial attachment tests demonstrated that the SA-CS-Ti surfaces exhibit superior osteogenic behavior relative to other Ti surfaces studied while showing significant anti-infective activities in the POI model with a low infection ratio (bacteria: cell ratio of 0.001:1) 30 min after infection. Additionally, the SA-CS-Ti surfaces showed significantly reduced (p < 0.05) bacteria proliferation compared to the control Ti surfaces (UN-Ti), demonstrating their antifouling property. The significantly increased (p < 0.05) sensitivity of Staphylococcus. aureus adhered to the SA-CS-Ti surfaces against cefazolin (1 mg/L treatment) and gentamicin (10 mg/L and 100 mg/L treatment) in the coculture system augmented potential of SA-CS-Ti to be used as orthopedic implants. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 586-594, 2016.


Assuntos
Quitosana/farmacologia , Técnicas de Cocultura/métodos , Osteoblastos/citologia , Staphylococcus aureus/citologia , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/patologia , Titânio/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Cefazolina/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Gentamicinas/farmacologia , Humanos , Modelos Biológicos , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA